
Phylogenetic Inference: Distance Methods

In distance methods or distance matrix methods, evolutionary distances
are computed for all pairs of taxa, and a phylogenetic tree is constructed
by considering the relationships among these distance values. There are
many different methods of constructing trees from distance data. Here
we discuss only the methods that have proved to be useful for actual data
analysis.

6.1. UPGMA

The simplest method in this category is the unweighted pair-group
method using arithmetic averages (UPGMA). This method is often at-
tributed to Sokal and Michener (1958), but the method used by these au-
thors is quite different from the currently used version. Its clear-cut al-
gorithm appears in Sneath and Sokal's (1973) book. A tree constructed
by this method is sometimes called a phenogram, because it was origi-
nally used to represent the extent of phenotypic similarity for a group of
species in numerical taxonomy. However, it can be used for constructing
molecular phylogenies when the rate of gene substitution is more or less
constant. Particularly when gene frequency data are used for phyloge-
netic reconstruction, this model produces reasonably good trees com-
pared with other distance methods (Nei et al. 1983; Takezaki and Nei
1996). In this case, a distance measure that has a smaller coefficient of
variation seems to give better trees than other distance measures even
if it is not strictly proportional to the number of gene substitutions
(Takezaki and Nei 1996). UPGMA is intended to reconstruct a species
tree, although topological errors often occur when the rate of gene sub-
stitution is not constant or when the number of genes or nucleotides used
is small.

Algorithm

In UPGMA, a certain measure of evolutionary distance is computed for
all pairs of taxa or sequences, and the distance values are presented in
the following matrix form.
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88 CHAPTER 6

Taxon 1 2 3 4
2 d12

3 ^13 d23

4 d14 cf24 d34

5 ^15 ^25 ^35 d45

Here, cL stands for the distance between the Mh and;'-th taxa. Clustering
of taxa starts with a pair of two taxa with the smallest distance. Suppose
that of12 is smallest among all distance values in the above matrix. Taxa
1 and 2 are then clustered with a branch point located at distance b =
c/12/2. Here, we have assumed that the lengths of the branches leading
from this branch point to taxa 1 and 2 are the same (see Example 6.1).
Taxa 1 and 2 are then combined into a single composite taxon or cluster
[u = (1-2)], and the distance between this u and another taxon Jc(Jc ¥* 1,
2) is computed by duk = (d^k + d2k}/2. Therefore, we have the following
new matrix.

Taxon u = (1-2) 3 4
3 du3

4 du* ^34

5 du5 d35 d45

Now suppose that distance du3 is smallest. Then, taxa u and 3 are com-
bined into a new composite taxon or cluster [v = (1-2-3)] with a branch
point of b = du3/2 = (d13 + d23)/(2 X 2). The distance between the newly
created cluster v and each of the remaining taxa (&'s) is now computed
by d^ = ((1^ + dk2 + dk3}/3. We then have

Taxon v = (1-2-3) 4
4 <*„
5 d* ^45

Let us assume that dv4 is smallest in the above distance matrix. We then
combine v = (1-2-3) and 4 with a branch point of b = dvj2 = (c/14 + d24

+ c?34)/(3 x 2). It is obvious that the last taxon to join the tree is 5, and
the branch point is given by b = (d15 + d25 + d35 + c?45)/(4 X 2).

It is of course possible that in the second matrix the smallest distance
is d45 (or any other one) instead of du3. In this case, taxa 4 and 5 are joined
with the branch point of b = d45/2, and a new composite taxon, v = (4-
5), will be created. The distances between v and other taxa (3 and u are
given by d3v = (d?4 + d35}/2 and duv = (d14 + d15 + d24 + d25)/4. Now
suppose that duv is smallest. Then, taxa u and v are clustered, and taxon
3 will be the last to join the cluster. Of course, if d3v is smallest, taxa 3
and v cluster first.

As is obvious from the above example, the distance between two clus-
ters (A and B) is given by the following formula.
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PHYLOGENETIC INFERENCE: DISTANCE METHODS 89

where r and s are the numbers of taxa in clusters A and B, respectively,
and dr is the distance between taxon i in cluster A and taxon ;' in cluster
B. The branch point between the two clusters is given by dAB/2. For the
purpose of computer programming, however, the above equation is not
convenient, and other faster algorithms are used to compute dAB (e.g.,
Swofford et al. 1996).

Statistical Tests of UPGMA Trees

Rooted and Unrooted UPGMA Trees

A tree obtained by UPGMA is usually presented as a rooted tree, because
it is easy to infer the root of the tree under the assumption of a constant
rate of evolution. However, UPGMA is a method of inferring both the
topology and branch lengths similar to other methods, and we do not
have to give the root to a UPGMA tree. In other methods of phylogenetic
inference, an uprooted tree is usually constructed, because it is difficult
to determine the root when the evolutionary rate varies from branch
to branch. We can use the same approach and construct an unrooted
UPGMA tree, disregarding the root usually given to a UPGMA tree. When
we compare an UPGMA tree with trees constructed by other methods,
we should use this unrooted UPGMA tree, because rooting can introduce
an additional source of errors in tree building. Unrooted trees are also
useful for testing the reliability of the tree obtained by using the boot-
strap or other method, as will be discussed below.

Reliability of UPGMA Trees

Since a phylogenetic tree is usually constructed from a limited amount
of data, it is important to examine the reliability of the tree obtained. As
will be discussed in detail in chapter 9, there are two major methods of
testing the reliability of the topology of a tree obtained by distance meth-
ods. In the case of UPGMA trees, we can use Nei et al.'s (1985) interior
branch test or Felsenstein's (1985) bootstrap test. Both tests examine the
reliability of each interior branch of a tree. If every interior branch length
is proved to be positive, the tree is regarded as reliable from the statisti-
cal point of view. However, Nei et al.'s test becomes complicated when
the number of taxa examined is large. A simpler way of testing the posi-
tiveness of an interior branch is to use the bootstrap test considering un-
rooted UPGMA trees (see chapter 9 for details). In this test, it is custom-
ary to compute a quantity equivalent to the probability of confidence (1
- Type I error) rather than the significance level. This value is called the
bootstrap confidence value (PB) or bootstrap value. If this value is higher
than 95% (or 99% depending on the confidence level one wishes to
have), the interior branch is considered to be statistically significant
(Felsenstein 1985; Efron et al. 1996). In this book, we will use this boot-
strap technique extensively.

It is known that when closely related DNA (or protein) sequences are
used for constructing UPGMA trees, two or more trees (tie trees) may be
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90 CHAPTER 6

produced from the same distance (Kim et al. 1993; Backeljau et al. 1996;
Takezaki 1998). These tie trees occur because two or more distance val-
ues in a distance matrix occasionally become identical. It is possible to
enumerate all these tie trees (Rohlf 1993), but this enumeration is not
very meaningful, since these tie trees are primarily caused by sampling
errors of distance estimates and they are close to one another. A better
way of treating this problem is to construct a bootstrap consensus tree
(see section 9.3). This consensus tree also has a bootstrap value for each
interior branch, and it can be treated in the same way as the above
UPGMA tree with bootstrap values. Therefore, we will know the relia-
bility of each branching pattern of the UPGMA tree. When only one
UPGMA tree exists for a given data set, the bootstrap consensus tree is
usually identical with the original UPGMA tree (Takezaki 1998).

Example 6.1. UPGMA Tree of Hominoid Species

Figure 6.1 shows the nucleotide sequences of a segment (896 nucleo-
tides) of mitochondrial DNA (mtDNA) from humans, chimpanzees, go-
rillas, orangutans, and gibbons (Brown et al. 1982). In this data set,
transitional nucleotide differences are considerably greater than trans-
versional differences. The average transition/transversion ratio (R] ob-
tained by Equation (3.18) is about 6.2. We therefore estimated the num-
ber of nucleotide substitutions (d) per site using Equation (3.12) (Kimura
distance). The results obtained are presented in Table 6.1. (One site con-
taining an alignment gap was removed.) It is seen that the value between
humans and chimpanzees (d = 0.095) is smallest, so that humans and
chimpanzees are the first to be clustered with a branch point at bHC =
0.095/2 = 0.048 (Figure 6.2A). Humans and chimpanzees are now com-
bined into a single taxon, (HC). The d values between this taxon and go-
rillas, orangutans, and gibbons become (0.113 + 0.118)/2 = 0.115, (0.183
+ 0.201)/2 = 0.192, and (0.212 + 0.225)/2 = 0.218, respectively. The
other distance values remain unchanged. The smallest d value in the new
d matrix is that (0.115) between (HC) and gorillas. Thus, gorillas join (HC)
with a branch point at bG^HC) = 0.115/2 = 0.058. If this type of compu-
tation is repeated, we finally obtain the phylogenetic tree given in Figure
6.2A.

The tree given in this figure is an unrooted tree, and there are two in-
terior branches. The bootstrap values for the interior branches are writ-
ten in boldface. In the present case, the bootstrap consensus UPGMA tree
is virtually identical with the tree in Figure 6.2A. The branch separating
the group of humans, chimpanzees, and gorillas from the two other
species shows a bootstrap value of 100%, whereas the branch separating
humans and chimpanzees from gorillas has a value of 90%. Therefore,
this data set establishes the cluster of humans, chimpanzees, and goril-
las but is not sufficient to resolve the branching pattern among these three
species at the 95% confidence level. In this data set, application of the
statistical test of rate constancy given in chapter 10 does not reject the
hypothesis of a molecular clock. Therefore, the use of UPGMA for infer-
ring species trees is justified.
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Human AAGCTTCACCGGCGCAGTCATTCTCATAATCGCCCACGGACTTACATCCTCATTACTATTCTGCCTAGC AAACTCAAACT 8 0
Chimpanzee A.T. .C T T.
Gorilla TO. . . .T T A T
Orangutan AC. .CC G. .T T C CC G
Gibbon T..A..T...AC.G.C A..C..T..CC.G T

Hunan ACGAAC<XrACTCACAGTCGCATCATAAT«rrCTCTCAAGGACTTCAAACTCTACTCCCACTAATAGCTTrrTGATGACTT 160
Chimpanzee .T C T C C C
Gorilla A..C C T C C CC
Orangutan A. .C C. .". C C CC.C
Gibbon A C A....G...G..C...G.CT G C..C C

Human CTAGC AAGCCTCGCTAACCTCGCCTTACCCCCCACTATTAACCTACTGGGAGAACTCTCTGTGCTAGTAACCACGTTCTC 240
Chimpanzee C T. .C T. .C. .A. .G C T.A
Gorilla ..G C C A G C..A A
Orangutan A T. . .C. . . .A C. .C T. . A C. . A. . .A. .G. . .TA
Gibbon GC C C. .A. .T TC. .A. . .A.GG. .T.C

Human CTGATCAAATATCACTCTCCTACrrTACAOGAOrCAACATACTAGTCACAGCCCTATACTCCCTCTACATATTTACCACAA 320
Chimpanzee C C T A G G
Gorilla C.C. . .C. .TT TCT A.T G T. .T
Orangutan T T. .C CA A A A T T C
Gibbon . . .GG C.CT. . .A.TAC. . .C. .C. .0 G A. . . .G T T. .T. .

Human CACAATGGGGCTCACTCACCCACCACATTAACAACATAAAACCCTCATTCACACGAGAAAACACCCTCATGTTCATAC AC 400
Chimpanzee A T G T. .T A. .TT
Gorilla A...C A C.C T T A G...
Orangutan C.A. .TA. . ,c. . .A C T. .T C T C
Gibbon C.A. . .A T. .A A C TAT. A. .AC.T. .G. . .

Human OTATCCCCCATTCTCCTCCTATCCCT^^ACCCa^CATCATTACCGGGTTTTCCTCTTGTAAATATAGTTTAACCAAAAC 480
Chimpanzee C T T. .T..T C. .T. .A. .CA C
Gorilla C T..T..C CA....C
Orangutan C T AG CG.T CG. . .AC
Gibbon ..C.T C.C A TA T..C...A.TC.C C T

Human ATCAGATTGTGAATCTGACAACAGAGGCTTACGACCCCTTATTTACCGAGAAAGCTCACAAGAACTGCTAACTCATGCCC 560
Chimpanzee C T.T T. . . .AT. .
Gorilla T C. .A GT. . . .G A. . .
Orangutan . .T A.T. .T. .G.C.CC. .A TCA.T-
Gibbon . .T A. . . .T CGAA. . .T. . .GC C CTAT.

Human CCATGTCTGACAACATGGCTTTCTCAACTTTTAAAGGATAACAGCTATCCATTGGTCTTAGGCCCCAAAAATTTTGGTGC 640
Chimpanzee C C....G
Gorilla . .G. .CT A
Orangutan G G C AT
Gibbon A A

Human AACTCCAAATAAAAGTAATAACCATGCACACTACTATAACCACCCTAACCCTGACTTCCCTAATTCCCCCCATCCTTACC 720
Chimpanzee T.T C T A. . .C. .T T C. . .
Gorilla T...T..G....C T..G....A T T
Orangutan C.G TTT. .C. .C TG. . . .C. . .T.A C TACCG.T
Gibbon G.A. . .T. . . .C. .C. . .G. . .TT G. .A. .C TACAG . .

Human ACCCTCGTTAACCCTAACAAAAAAAACTCATACCCCCATTATGTAAAATCCATTGTCGCATCCACCTTTATTATCAGTCT 800
Chimpanzee A T G A. . . .G C. .T. .C. .
Gorilla ...T..A.C..T G C T..C C C..
Orangutan A C C C A.GGCCA G C C. .
Gibbon TA C. .T G. . . .T G. .C. .C ATG.CCA.T. .C. -T A C. .

Human CTTCCCCACAACAATATTCATGTGCCTAGACCAAGAAGTTATTATCTCGAACTGACACTGAGCCACAACCCAAACAACCC 880
Chimpanzee T A C A G A
Gorilla TC.A C A.G A TT.
Orangutan TA. . . .A T. .C GA ACC. .CG. .A. A TG. . . .A. A. .C G. . .CTA.
Gibbon A. .T T AC ACC T. .A A.TG GCTAG

Human AGCTCTCCCTAAGCTT 896
Chimpanzee
Gorilla .A
Orangutan .A A
Gibbon .A

FIGURE 6.1. Sequences of an 896 bp fragment of primate mitochondrial DNAs.
The orangutan sequence has one deletion at position 560. Data from the
Gen Bank.
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92 CHAPTER 6

Table 6.1 Kimura distances for the data shown in Fig. 6.1.

Chimpanzee
Gorilla
Orangutan
Gibbon

Human

0.095 ± 0.011
0.113 ± 0.012
0.183 ± 0.016
0.212 ± 0.018

Chimpanzee

0.118 ± 0.013
0.201 ± 0.018
0.225 ± 0.019

Gorilla

0.195 ± 0.017
0.225 ± 0.019

Orangutan

0.222 ± 0.018

Note: One site containing an alignment gap was removed from the analysis.

6.2. Least Squares (LS) Methods

When the rate of nucleotide substitution varies from evolutionary lineage
to lineage, UPGMA often gives an incorrect topology. In this case, we
should use methods that allow different rates of nucleotide substitution
for different branches. One group of such methods is least squares (LS)
methods. There are several different LS methods, but the most commonly
used ones are the ordinary LS and the weighted LS methods.

Topology Construction

In the ordinary LS method of phylogenetic inference (Cavalli-Sforza and
Edwards 1967), we consider the following residual sum of squares

where d~ and ey;. are the observed and patristic distances between taxa i
and /, respectively. The patristic distance between taxa i and j is the sum
of estimates of the lengths of all branches connecting the two taxa in a
tree. For example, the patristic distance between humans and gorillas in

FIGURE 6.2. Evolutionary trees inferred by different distance methods. The
UPGMA tree is unrooted. Bootstrap values are in boldface.
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PHYLOGENETIC INFERENCE: DISTANCE METHODS 93

the tree of Figure 6.2B is a + c + d = 0.110. In the standard LS method,
Rs is computed for all plausible topologies, and the topology with the
smallest Rs value is chosen as the final tree.

Fitch and Margoliash (1967) used the following Rs value for choosing
the final topology.

This procedure is called a weighted LS method. In practice, the Rs val-
ues defined in Equations (6.2) and (6.3) usually give the same topology
or very similar topologies.

Theoretically, a better procedure would be to use the generalized LS
method of computing Rs, in which both the variance and covariance of
dr's are taken into account (Cavalli-Sforza and Edwards 1967; Buhner
1991). However, this method is very time consuming. Furthermore, when
the cL values approach 0, the variance-covariance matrix becomes sin-
gular (Rzhetsky and Nei 1992b), and thus this method does not seem to
give reliable phylogenetic trees.

Least-Squares Method with the Constraint
of Nonnegative Branches

Using computer simulation, Saitou and Nei (1986) and Rzhetsky and Nei
(1992a) studied the probability of obtaining the correct tree topology by
the ordinary and weighted least-squares methods and showed that the
probability is often lower than that of some other distance methods. Part
of the reason seems to be that these methods often give negative estimates
of branch lengths, which are theoretically unrealistic. Therefore, one way
to improve the efficiency of this method would be to use the LS method
with the constraint of nonnegative branches (Felsenstein 1995, 1997).
Using computer simulation, Kuhner and Felsenstein (1994) indeed
showed that this modified method increases the probability of obtaining
the correct topology considerably. Estimation of branch lengths with the
constraint of nonnegative values requires iterative computation of
branch length estimates (Felsenstein 1995,1997). It is also known that in
the case of four taxa this method gives the same topology as that obtained
by the neighbor joining method (see section 6.4) (Gascuel, 1994; M.
Buhner, personal communication, 1991).

Estimation of Branch Lengths

Fitch-Margoliash Method

To compute the residual sum of squares, Rs, we must first estimate the
branch lengths and the er's for each topology. A simple way to estimate
branch lengths is to use Fitch and Margoliash's method (1967). Although
the estimates obtained by this method are not always the same as those
obtained by the LS method, the differences are usually very small so that
the Fitch-Margoliash method is still used. This method takes advantage
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94 CHAPTER 6

FIGURE 6.3. Estimation of branch lengths.

of the property that when there are only three taxa the estimates of branch
lengths for all three taxa can be uniquely determined.

Consider three taxa 1,2, and 3, of which the evolutionary relationships
are given by Figure 6.3A. The evolutionary distances between taxa 1 and
2,1 and 3, and 2 and 3 are then given by

where x, y, and z are the branch lengths for taxa 1,2, and 3, respectively.
Solving these simultaneous equations gives

These are LS estimates.
When there are four or more taxa, we first choose the two taxa with the

smallest distance and denote them by A and B. All the remaining taxa
are combined into a single composite taxon designated by C. The dis-
tance between taxa A and B is the same as the original distance (c/12), but
the distance between taxa A and C is now represented by the simple av-
erage of the distances between A and all taxa in C. Similarly, the distance
between B and C is the average of the distances between B and all taxa
in C. For example, in the distance matrix in Table 6.1, humans and chim-
panzees show the smallest distance. Therefore, we denote humans and
chimpanzees by A and B, respectively, and the remaining species by C.
From the distance estimates given in Table 6.1, we have dAB = 0.095, dAC

= (0.113 + 0.183 + 0.212)/3 = 0.169, and dBC = (0.118 + 0.201 + 0.225}/
3 = 0.181. The values of x, y, and z therefore become 0.042, 0.054, and
0.124, respectively, from Equations (6.5). Here x and 7represent the num-
ber of estimated nucleotide substitutions (a and b) for the human and
chimpanzee lineages, respectively, and z is the distance between the
composite taxon C and the branch point between humans and chim-
panzees (Figure 6.2B).

We now combine taxa 1 and 2 and designate the composite taxon as
(AB). We then recompute the distances between this composite taxon
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PHYLOGENETIC INFERENCE: DISTANCE METHODS 95

(AB) and all other taxa and choose the two taxa that show the smallest
value among all distances, including those that do not involve (AB).
These two taxa are again designated by A and B, whereas C represents
the composite taxon consisting of all the remaining taxa. The new x, y,
and z values are computed by the same procedure. In the case of homi-
noid data, the distances between (AB) and the other taxa (gorillas, orang-
utans, and gibbons) have already been computed (0.115, 0.192, and
0.218, respectively) when we constructed the UPGMA tree, and the
smallest distance in the new matrix is that between (AB) and gorillas.
Therefore, (AB) and gorillas are designated as the new A and B, respec-
tively, whereas C represents orangutans and gibbons. We now have dAB

= 0.115, dAC = (0.183 + 0.201 + 0.212 + 0.225)/4 = 0.205, and dBC =
(0.195 + 0.225)/2 = 0.210. Therefore, we have x = 0.055, y = 0.060, and
z = 0.150 from Equations (6.5). Branch lengths c and d of the tree in
Figure 6.2B are then estimated by using the following relationships.

We know that (a + b)/2 = 0.048 and z = 0.150. Therefore, we have c =
0.008 and d = 0.060 (Figure 6.2B). The above procedure is repeated un-
til all branch lengths are estimated. In the case of hominoid data, the es-
timates of the three remaining branches (e, f, and g) are presented in
Figure 6.2B.

We are now in a position to compute e..'s for all pairs of taxa and then
the Rs values in Equations (6.2) and (6.3). The latter values become
0.000047 and 0.002264, respectively. To find the LS tree, however, we
must consider all possible or all plausible trees. In practice, the number
of topologies is usually very large so that only a small proportion of pos-
sible topologies is examined for computing the Rs values. In Fitch-
Margoliash's (1967) method, the first topology is constructed by the algo-
rithm described above. Once this topology is obtained, different
topologies are examined by various branch-swapping algorithms. These
algorithms will be explained in the next chapter, where the algorithms are
important in relation to the construction of maximum parsimony trees.

Once the final tree topology is obtained by minimizing Rs, better esti-
mates of branch lengths of the final tree may be obtained by the LS
method, which will be described below. Mathematically, the LS esti-
mates are more reliable than those obtained by the Fitch-Margoliash
method, but in practice, the differences between them are usually very
small when DNA or protein sequences are used.

Least Squares Methods

The standard method of estimating the branch lengths of a tree is to use
the LS method. Rzhetsky and Nei (1992a, 1993) developed a fast algo-
rithm for obtaining LS estimates of branch lengths for any given topol-

(AE) and all other taxa and choose the two taxa that show the smallest
value among all distances, including those that do not involve (AE}.
These two taxa are again designated by A and B, whereas C represents
the composite taxon consisting of all the remaining taxa. The new x, y,
and z values are computed by the same procedure. In the case of homi-
noid data, the distances between (AB) and the other taxa (gorillas, orang-
utans, and gibbons) have already been computed (0.115, 0.192, and
0.218, respectively) when we constructed the UPGMA tree, and the
smallest distance in the new matrix is that between (AB} and gorillas.
Therefore, (AB) and gorillas are designated as the new A and B, respec-
tively, whereas C represents orangutans and gibbons. We now have dAB

= 0.115, dAC = (0.183 + 0.201 + 0.212 + 0.225)/4 = 0.205, and dBC =
(0.195 + 0.225)/2 = 0.210. Therefore, we have x = 0.055, y = 0.060, and
z = 0.150 from Equations (6.5). Branch lengths c and d of the tree in
Figure 6.2B are then estimated by using the following relationships.
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FIGURE 6.4. Three different topologies for five taxa and two "null trees" for test-
ing topological differences.

ogy. Let us consider a hypothetical tree for five sequences given in Figure
6.4A and use the ordinary LS method to estimate the branch lengths de-
noted by br b2 and br We represent an estimate of evolutionary
distance between sequences i and ;' by di}.. We can then write the c .̂'s as
follows.

where e .̂'s are sampling errors. We assume that e.. is distributed with
mean 0 and variance V(dJ. If we use matrix algebra, the above set of
equations may be written as

CHAPTER 6
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PHYLOGENETIC INFERENCE: DISTANCE METHODS 97

where d, b, and € are column vectors of d^'s, b/s, and e .̂'s, respectively;
that is, df = (cf12, dl3,.. . , d45), b* = (br b2, .. . , b7), and e* = (€12, e13,
. . . , e45). Here t indicates the transpose of a vector or a matarix. Note that
vectors d and e have r = m(m — I)/2 elements and b has T = 2m — 3 el-
ements, where m is the number of sequences. A is a matrix representing
a topology, and in this case (topology [A] in Figure 6.4) it is given by

An element of this matrix is 1 when there is a corresponding branch and
0 otherwise (see the equations for d~'s). The LS estimate of b is then given
by

where L = (A'A) 1A*. Obviously, an estimate of the length of the i-th
branch is

where Li is the j'-th row of the matrix L (Rzhetsky and Nei 1992a). If we
use this formula for the case of topology A in Figure 6.4, we obtain
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98 CHAPTER 6

Similar expressions can be obtained for any other topology such as topol-
ogy B or C in Figure 6.4 or for any number of sequences (m).

In practice, however, estimation of branch lengths by Equation (6.10)
is not always easy, because a large amount of computational time is re-
quired when the number of sequences is large. Rzhetsky and Nei (1993)
solved this problem by developing a simple method of estimating branch
lengths without using matrix algebra. Consider tree B in Figure 6.3 as an
example. If we choose one particular interior branch of this tree, this tree
can be drawn in the form of tree C, where A, B, C, and D each represent
a cluster of sequences. For example, for the interior branch b of tree B in
Figure 6.3, A, B, C, and D represent clusters (3), (1, 2), (4, 5), and (6, 7)
respectively. In this case, the branch length b in tree C can be estimated
by the following equation

where

Here, mA, mB, mc, and mD are the numbers of sequences in clusters A,
B, C, and D, respectively, and dAC is the sum of pairwise distances be-
tween cluster A (sequence 3) and cluster C (sequences 4 and 5). The dis-
tances dBD, dBC, dAD, dAB, and dCD are defined in a similar fashion. By
contrast, the LS estimate of the length (b} of an exterior branch of tree D
in Figure 6.3 is given by

where dAB is the sum of all pairwise distances between sequence A (rep-
resenting one exterior branch) and all sequences belonging to cluster B,
dAC is the sum of distances between A and all sequences belonging to
cluster C, dBC is the sum of all pairwise distances between sequences in
clusters B and C, and mB and mc are the numbers of sequences in clus-
ters B and C, respectively.

The above equations simplify the computation of branch length esti-
mates considerably. For example, £a in Equation (6.10) can be obtained
by using Equation (6.12). In this case, the tree is given by Figure 6.4A,
and the sequences in clusters A, B, and C are 1,2, and (3, 4, 5), respec-
tively. Therefore, c?AB = d12, dAC = d13 + of14 + c?15, dBC = d23 + c/24 +
d25, mB = 1, and mc = 3, and we have 5a = [c?12 + (d13 + c/14 + c?15)/3
- (c?23 + c/24 + c?25)/3]/2, which is identical to bl in Equation (6.10).
Similarly, all the other branch length estimates can be obtained by either
Equation (6.11) or (6.12). Once b.'s are obtained, e..'s in Equations (6.2)
and (6.3) can easily be obtained by summing the b/s for all the branches
that connect sequences i and /, and therefore Rs can be computed.

where
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Bryant (1997), Gascuel (1997b), and Bryant and Waddell (1998) re-
cently developed a fast algorithm for computing b, using Equations (6.11)
and (6.12). The readers who are interested in this algorithm should refer
to the original papers. This algorithm is used in PAUP* and MEGA2.

Figure 6.2B shows a tree obtained by the Fitch-Margoliash method
with LS estimates of branch lengths. The distance used is the Kimura dis-
tance. This tree now has a shorter branch for humans than that of the UP-
GMA tree and a longer branch for chimpanzees, but the other branches
are nearly the same as those of the UPGMA tree. In the present case, Fitch
and Margoliash's original algorithm gives essentially the same results.

Theoretical Basis

The LS method is a well-established statistical method of parameter es-
timation. When the variables are normally distributed, it is as efficient as
the maximum likelihood method. In the present case, if the number of
nucleotides or amino acids examined is sufficiently large, bi is expected
to follow the normal distribution (Rzhetsky and Nei 1993). Therefore, the
LS method is expected to give good estimates of branch lengths (b/s).

However, our primary interest is to determine the topology of the tree,
and if this topology is incorrect, branch length estimates do not have
much biological meaning. The mathematical formulation presented in
this section is not intended to estimate a topology, because there is no
parameter specifying topology in the formula for Rs. What is then the the-
oretical basis of the LS method for "estimating" the correct topology? At
this moment, we do not have a good answer to this question. We can sim-
ply argue that a topology of which the estimated branch lengths are clos-
est to the observed ones should be a good topology. Indeed, if unbiased
estimates of evolutionary distances are used and the number of nu-
cleotides or amino acids used (ri) becomes infinitely large, the Rs value
will be 0 only for the correct topology. Therefore, if we regard a tree-
building method as a statistic as Felsenstein (1978) did, the LS method
is a consistent estimator of the true topology. Computer simulations (e.g.,
Sourdis and Krimbas 1987; Kuhner and Felsenstein 1994) have shown
that the LS method with the constraint of nonnegative branches gives rea-
sonably good results for topology construction when the number of nu-
cleotides used is large.

63. Minimum Evolution (ME) Method

Principle

In this method, the sum (S) of all branch length estimates, i.e.,

is computed for all or all plausible topologies, and the topology that has
the smallest S value is chosen as the best tree. Here b, denotes an esti-
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100 CHAPTER 6

mate of the length of the i-th branch, and T is the total number of
branches, that is, 2m - 3. For example, in the case of tree A of Figure 6.4,
S is given by 6a + b2 H h 57, where b} indicates an estimate of br The
idea of a minimum evolution method was first put forward by Edwards
and Cavalli-Sforza (1963) without giving any justification or algorithm.
Later, Kidd and Sgaramella-Zonta (1971) suggested that the total branch
lengths [L(S)] be computed by summing the absolute values (|52.|) of all
branch length estimates without any theoretical justification. (In the case
of allele frequency data with which Kidd and Sgaramella-Zonta were
concerned, LS estimates of bf's often become negative.) Unfortunately,
L(S) does not have a nice statistical property that permits the fast com-
putation of S values, and the statistical tests as developed by Rzhetsky
and Nei (1992a, 1993) are not applicable to L(S). Note also that in the
presence of statistical errors estimates of short branch lengths may be-
come negative by chance even for the correct topology (Sitnikova et al.
1995).

The theoretical foundation of the ME method is Rzhetsky and Nei's
(1993) mathematical proof that when unbiased estimates of evolutionary
distances are used, the expected value of S becomes smallest for the true
topology irrespective of the number of sequences (m). This is a good sta-
tistical property, but a topology with the smallest S is not necessarily an
"unbiased estimator" of the true topology (chapter 9).

Like the LS method, the ME method is supposed to examine all possi-
ble topologies and find one that has the smallest S value. For this pur-
pose, one may use the algorithms presented in chapter 7. However, this
is very time consuming, and for this reason Rzhetsky and Nei (1992a,
1993) suggested that the neighbor joining (NJ) tree (see section 6.4) be
first constructed and then a set of topologies close to the NJ tree be ex-
amined to find a tree with a smaller S value (temporary ME tree). A new
set of topologies close to this temporary ME tree (excluding previously
examined topologies) are now examined to find a tree with an even
smaller S value. This process will be continued until no tree with a
smaller S is found, and the tree with the smallest S is regarded as the ME
tree. The theoretical basis of this strategy is that the ME tree is generally
identical or close to the NJ tree when m is relatively small (Saitou and
Imanishi 1989; Rzhetsky and Nei 1992a), and thus the NJ tree can be used
as a starting tree when m is large.

One way of choosing closely related topologies is to consider all
topologies that are different from the temporary ME tree by topological
distances dT=2 and 4. If this is repeated many times, avoiding all topolo-
gies previously examined, one can usually obtain the ME tree or a tree
close to it. We call this procedure the close neighbor interchange (CNI)
algorithm.

Computation of S and D

In a previous section, we have mentioned that the LS estimates of branch
lengths are given by a function of distance estimates (dr's), that is, b =
Ld. Therefore, S can be expressed as a linear function of dr or ds, where
cL.'s are renumbered as df for i = 1,2,. . . , m(m — l)/2. That is,
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where r = m(m - l)/2 (Rzhetsky and Nei 1992a). The coefficients y/s are
determined solely by the tree topology, and they can be computed if the
topology matrix A in Equation (6.6) is defined. For example, in the case
of tree A in Figure 6.4, S becomes

Similarly, for tree B in Figure 6.4 we have

However, we are primarily interested in the difference in S between
two topologies. This difference (D) is given by

where yA/ and yBi are the coefficients of the Mh distance in S for topolo-
gies A and B, respectively. Therefore, if yA/s and yB/s are computed for
a pair of topologies, D can easily be obtained. For this purpose, it is not
necessary to know individual S values. In the case of trees A and B in
Figure 6.4, we know yA/s and yB/s, so that D is given by

In practice, D may be subject to sampling error, and we are interested
in testing the null hypothesis that the expected value [E(D)] of D is 0 for
a given type of nucleotide or ammo acid substitution. If D is significantly
greater than 0, we may conclude that tree A is better than tree B. However,
what is the biological meaning of this null hypothesis when two differ-
ent topologies are compared? Actually, this hypothesis is equivalent to
the null hypothesis that the lengths of the interior branches that produce
different branching patterns (different partitions of sequences) for the
two topologies are 0. Only in this case do trees A and B become identi-
cal. The tree corresponding to this null hypothesis is called the null tree.
For example, in the comparison of trees A and B in Figure 6.4, the null
tree is given by tree D, where b = 0. Therefore, the test of E(D) = 0 for the
trees A and B is equivalent to testing the null hypothesis of b6 = 0. In-
deed, we can show that

Therefore, when be = 0, the expectation of D is 0. In practice, we do not
know which of the trees A and B is the correct one. So, D can be positive
or negative. Similarly, D = Sc - SA can be written as
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102 CHAPTER 6

This indicates that we are testing the null hypothesis that both b6 and b7

in tree A are 0 and that the null tree for this null hypothesis is tree E in
Figure 6.4. This principle applies to any pair of bifurcating trees, irre-
spective of the number of sequences.

To test the null hypothesis of E(D] = 0, we have to know the standard
error of D. Rzhetsky and Nei (1992a, 1993) developed a simple algorithm
to compute the standard error of D for several substitution models. As
long as the number of sequences used is relatively small (say, m < 50),
their method is easily applicable. However, if m is large, it requires a sub-
stantial amount of computer time. Another way of testing is to use a boot-
strap method (Nei 1991). In this bootstrap method, S is computed for a
given pair of topologies (i and;1) for each set of resampled sequences (see
chapter 9), and D.. = S. - S. is computed. If this is repeated many times,
we can compute the standard error of D. Therefore, we can test the null
hypothesis of E(D) = 0 by the Z test given in Equation (4.5). When there
are several potentially correct trees, Dr can be computed for all pairs of
i and ;' using the same set of resampled sequences.

Example 6.2. ME Trees for Hominoid Species

In sections 6.1 and 6.2, we constructed the UPGMA and the Fitch-
Margoliash trees for five hominoid species using Kimura distances. Let
us now construct the ME tree using the same set of pairwise distances
(Table 6.1). In the present case, there are only 15 possible topologies, so
it is easy to identify the ME tree. The tree obtained is presented in Figure
6.2C. The topology and the branch lengths of the tree are virtually iden-
tical with those of the FM tree. We also constructed the ME trees using
the p distance, Jukes-Cantor distance, and Kimura gamma distance with
a = 0.53, but these trees had the same topology, and their branch lengths
were similar to those obtained with the Kimura distance.

To see the differences in the S value and branch length estimates be-
tween different topologies, let us consider the three possible trees for hu-
mans (H), chimpanzees (C), orangutans (O), and gibbons (B) given in
Figure 6.5. The S value and the branch length estimates given in these
trees were obtained by using Jukes-Cantor distance. Topology I, in which
humans and chimpanzees make a cluster, has the smallest S value, and
the S values for the other topologies are significantly greater than that
for topology I. The bootstrap value (100%) also supports this topology.
Therefore, topology I is the most likely tree.

Theoretically, it can be shown that in the absence of sampling error the
interior branch of the correct topology for four sequences are always non-
negative, whereas that of an incorrect topology is negative (Rzhetsky and
Nei 1992a; Sitnikova et al. 1995). In the present case, the interior branch
is positive in topology I but is negative in topologies II and III. These re-
sults also support topology I. Incidentally, Figure 6.5 includes the MP
and ML trees, which will be discussed later. In these trees, all interior
branches are nonnegative, so that the positiveness of interior branches
cannot be used for distinguishing between the correct and incorrect
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FIGURE 6.5. Estimates of branch lengths obtained by the ME, MP, and ML methods
for a tree of humans (H), chimpanzees (C), orangutans (0), and gibbons (B). The
Jukes-Cantor model was used in all calculations to make fair comparisons of ME
and ML trees with MP trees. The bootstrap values for each case are shown below
the interior branch. All branch lengths are in units of the number of substitutions
per 100 sites.

topologies, although the interior branch of incorrect topologies tends to
be smaller than that of the correct topology. However, the bootstrap test
gives essentially the same conclusion as that for the ME tree.

6.4. Neighbor Joining (NJ) Method

Although the ME method has nice statistical properties, it requires a sub-
stantial amount of computer time when the number of taxa compared is
large. Saitou and Nei (1987) developed an efficient tree-building method
that is based on the minimum evolution principle. This method does not
examine all possible topologies, but at each stage of taxon clustering a
minimum evolution principle is used. This method is called the neigh-
bor joining (NJ) method and is regarded as a simplified version of the ME
method. When four or five taxa are used, the NJ and ME methods give
identical results (Saitou and Nei 1987). There is some similarity between
NJ and Sattath and Tversky's (1977) additive tree method (see also Fitch

(C) ML trees
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104 CHAPTER 6

FIGURE 6.6. A phylogeny of six sequences with known branch lengths.

1981), but the former gives both the topology and branch lengths simul-
taneously.

One of the important concepts in the NJ method is neighbors, which are
defined as two taxa that are connected by a single node in an unrooted
tree. For example, taxa 1 and 2 in the tree of Figure 6.6 are neighbors, be-
cause they are connected by the only node A. Similarly, taxa 5 and 6 are
neighbors, but all other pairs of taxa are not. However, if we combine taxa
1 and 2 and regard them as a single taxon, the combined taxon (1-2) and
taxon 3 are now neighbors. It is possible to define the topology of a tree
by successively joining neighbors and producing new pairs of neighbors.
For example, the topology of the tree of Figure 6.6 can be described by the
following pairs of neighbors: (1,2), (5,6), (1-2,3), and (1-2-3,4). Therefore,
by finding these pairs of neighbors, one can obtain the tree topology.

Algorithm

Construction of a tree by the NJ method begins with a star tree, which is
produced under the assumption that there is no clustering of taxa (Figure
6.7A). In practice, this assumption is generally incorrect. Therefore, if we
estimate the branch lengths of the star tree and compute the sum of all
branches (S0), this sum should be greater than the sum (SF) for the true
or the final NJ tree. However, if we pick up neighbors 1 and 2 and con-
sider the tree presented in Figure 6.7B, the sum (S12) of all branch lengths
should be smaller than S0, although it may be greater than SF. In prac-
tice, since we do not know which pair of taxa are true neighbors, we con-
sider all pairs of taxa as a potential pair of neighbors and compute the
sum of branch lengths (SJ for the i-th and;'-th taxa using a topology sim-
ilar to that given in Figure 6.7B. We then choose the taxa i and; that show
the smallest S.. value. Of course, actual distance values are subject to sto-
chastic errors, so that the neighbors chosen in this way may not always
be the true neighbors. Once a pair of neighbors are identified, they are
combined into one composite taxon, and this procedure is repeated un-
til the final tree is produced.

Mathematically, S0 for the star tree is given by
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PHYLOGENETIC INFERENCE: DISTANCE METHODS 105

FIGURE 6.7. Illustration of the computational process in the neighbor-joining
method.

where Lix is the branch length estimate between nodes i and X, and T =
^Kjdjj- In the present case, i stands for the Mh exterior node and X the
interior node (Figure 6.7A). By contrast, Figure 6.7B indicates that S12 is
given by the sum of L1X + L2X, LXY, and 2£!3 LiY. Here, L1X + L2X = d12,
and

Therefore, we have

Obviously, S.. can be computed in the same way if we replace 1 and 2 by
i and;, respectively, in the above equations. Equation (6.23) requires less
computational time than Equation (6.22). Furthermore, since T is the
same for all pairs of i and ;', SSj can be replaced by

If we write R^ and fl2 can also be expressed as
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for the purpose of computing the relative value of S.. (Studier and
Keppler 1988). Equation (6.24) is used for computer programming to fa-
cilitate the computation.

Once the smallest Sr is determined, we can create a new node (A) that
connects taxa z and;'. The branch lengths (bAj and bA.) from this node to
taxon i and taxon ; are given by

(Saitou and Nei 1987; Studier and Keppler 1988). These values are
known to be LS estimates for the topology under consideration (Saitou
and Nei 1987). The next step is to compute the distance between the new
node (A) and the remaining taxa (k; 3 < k =s m) (Figure 6.7C). This dis-
tance is given by

If we compute all the distances using this equation, we have a new
(m - 1) X (m - 1) matrix. From this matrix, we can compute a new Sr

matrix using Equation (6.23). However, we denote this new S. by S' be-
cause this new Sr does not include the lengths of exterior branches for
the first pair of neighbors identified, and thus it is shorter than the real
total sum (S..) of branch lengths at this stage of tree construction. To find
the new pair of "neighbors," we choose a pair with the smallest Sr' value.
A new node B is then created for this pair of taxa, and a new (m - 2) X
(m - 2) distance matrix is computed by using Equation (6.26). This pro-
cedure is repeated until all taxa are clustered in a single unrooted tree.
The final tree obtained in this way is the NJ tree.

If one is interested in the reduction in Sr in each cycle of neighbor join-
ing, S.. can be obtained by adding the lengths of all branches eliminated
to S./. This process of reduction in S.. (represented by S) is shown in
Figure 6.7, but in actual practice Sf. is rarely computed. In fact, most com-
puter programs use Q .̂ rather than S^ or S./.

To illustrate the computational procedure, let us consider the evolu-
tionary distances given in cycle 1 of Table 6.2. These distances were ob-
tained by adding the branch lengths for each pair of taxa of the tree in
Figure 6.6. Therefore, all the distances satisfy the condition of additiv-
ity. The total sum of distances is T = 162. Therefore, S0 for the star tree
(Figure 6.7A) is 32.4 from Equation (6.21), since m = 6 in this case. We
now compute S..'s for all pairs of i and ;' for topology B in Figure 6.7. For
taxa 1 and 2, we have cf12 = 9, ̂  = 72, and R2 = 52, so S12 is 29.5 fro
Equation (6.23). Similarly, we compute S}.'s for all other pairs of taxa, and
they are shown in cycle 1 of Table 6.2. This table shows that the small-
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Table 6.2 Distance and S./ matrices at sequential steps of the NJ algorithm.

Distance Matrix SJ7 or S..' Matrix

Cycle 1

1
2
3
4
5
6

9
12 7
15 10
20 15
16 11

5
10
6

11
7

Selected Pair (1,

29.5
32.5
33.0
33.5

8 33.5

32.5
33.0
33.5
33.5

2) with branch lengths (7, 2); A

32.0
32.5 32.0
32.5 32.0

A. = (1, 2)
30.5

Cycle 2

A
3
4
5
6

5
8 5

13 10
9 6

11
7

Selected Pair (5,
8

19.7
20.3
21.0
21.0

6) with branch lengths (6,

20.3
21.0
21.0

2);B = (5,

20.
20,

6)

,7
,7 19.3

Cycle 3

A
3
4
B

A 3

5
8 5
7 4

Selected Pair

4

5

A

11.0
11.5
11.5

(a, 3) with branch lengths (4, 1); C =

3

11.5
11.5

(A, 3)

4

11.0

est S.. is S12 = 29.5. Thus, we infer that taxa 1 and 2 are neighbors. The
fact that these two taxa are indeed a pair of neighbors is seen in Figure
6.6. The branch lengths of taxa 1 and 2 from the new node A in Figure
6.7 can be obtained by Equations (6.25) and becomes 7 and 2, respec-
tively. These branch lengths are also identical with the true values of the
tree in Figure 6.6. We now compute the distance between the new node
A and taxon k using Equation (6.26). In the next step of neighbor joining
(cycle 2 in Table 6.2), taxa 5 and 6 are found to be a pair of neighbors, be-
cause S' = 19.3 is the smallest S..' value. Therefore, we create a newob i]

node B and compute b5B and b6B. They are 6 and 2, respectively, which
are again identical with those of the true tree (Figure 6.7). In cycle 3, taxa
A and 3 show the smallest S./ value (= 11.0). Therefore, we now create
a new node C. It is then obvious that node B and taxon 4 form a cluster.
This creates another node D and completes the entire process of neigh-
bor joining. We can now estimate branch lengths b4D, bCD, and bBD in
Figure 6.7F, and they become 3,1, and 2, respectively. The final tree ob-
tained is shown in Figure 6.7F. Both the topology and branch lengths of
this tree are identical with those of the true tree in Figure 6.6.

1 2 3 4 5 1 2 3 4 5

A 3 4 5 A 3 4 5
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However, this complete recovery of the original tree occurred because
we used additive distances without any backward and parallel muta-
tions. In real data, there are almost always backward and parallel muta-
tions in some sequences, so it is not always easy to reconstruct the true
tree. Therefore, it is important to conduct some statistical tests about the
reliability of the tree obtained.

Using the sequence data in Figure 6.1, we produced two NJ trees for
hominoid species using Kimura and p distances. Tree C in Figure 6.2 rep-
resents the NJ tree with Kimura distance, whereas tree D is the NJ tree
with p distance. In these trees, the branch lengths were estimated by the
ordinary LS method after the topology was determined. Note that the
topology of those trees is identical with that of the ME tree obtained for
the same data set.

Justification and Modifications

As mentioned above, the NJ method is based on the principle of mini-
mum evolution but generates only one final topology with branch length
estimates. Some authors criticized this method for this reason and sug-
gested that the ME method rather than this method be used. Actually, it
is possible to modify the NJ method to generate more topologies. Kumar
(1996b) developed an algorithm in which not only the minimum S..but
also several S .̂'s close to the minimum are considered as indicators of po-
tential neighbors in each cycle of S.. computation. This method gener-
ates as many topologies as desired and allows us to compare S values for
different topologies. Therefore, one can choose the topology that shows
the smallest S value. This is a hybrid method between the ME and NJ
methods. A similar method has been proposed by Pearson et al. (1999).

As shown by Rzhetsky and Nei (1993), the ME method is expected to
give the correct topology if the number of nucleotides examined (n) is
sufficiently large and an unbiased estimate of nucleotide substitutions is
used as a distance measure. When n is small and m is large, however, the
S value (Sm] of the ME tree tends to be smaller than that (Sc) of the cor-
rect tree because of sampling errors. In fact, Nei et al. (1998) have shown
that Sm is always equal to or smaller than Sc and that the probability of
occurrence of Sm < Sc is quite high when n is small (chapter 9). This in-
dicates that it is not rewarding to spend excessive time to find the
true ME tree when n is relatively small, because the true ME tree tends
to be incorrect. Computer simulations by Saitou and Imanishi (1989),
Rzhetsky and Nei (1992a), Gascuel (1997a, 1997b), and Nei et al. (1998)
have also shown that the probability of obtaining the correct topology is
nearly the same for both the ME and NJ methods. In other words, NJ is a
fast method of constructing phylogenetic trees and is appropriate for an-
alyzing a large data set. It is also capable of conducting bootstrap tests
rapidly.

Backeljau et al. (1996) stated that NJ may produce two or more tie trees
for the same data set. According to Takezaki (1998), NJ tie trees occur very
rarely when the computation is done with high precision (much less than
MP tie trees). Furthermore, even if multiple tie trees occur, they do not
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pose any serious problem if a bootstrap consensus tree is produced.
Therefore, we do not have to worry about them.

Gascuel (1997a) proposed the so-called BIONJ method to improve the
efficiency of NJ in obtaining the correct topology. The computational al-
gorithm is the same as that of NJ except that different weights are given
to dik, djk, and d}j in Equation (6.26) to minimize the variance of dAk.
Using computer simulation, he showed that BIONJ is slightly better than
NJ when sequence divergence is high. However, our limited experience
with actual data analysis has shown that the two methods almost always
give the same or very similar trees.

Example 63. NJ, ME, and BIONJ Trees for Simulated Sequence Data

To obtain some idea about the accuracy of NJ and BIONJ trees, let us con-
sider the results of a small computer simulation presented in Figure 6.8.
With real data, it is usually very difficult to know the true tree, so that it
is virtually impossible to compare the reconstructed tree with the true
tree. In a computer simulation, we can use a model tree and let a set of
DNA sequences evolve following the model tree with a given pattern of
nucleotide substitution. We can then reconstruct a tree using the DNA
sequences generated and compare the reconstructed tree with the true
tree.

The model and the realized trees for 24 DNA sequences used in the pre-
sent simulation are shown in trees A and B of Figure 6.8, respectively.
The number of substitutions in each branch of the realized tree were ob-
tained by using pseudorandom numbers under the assumption that nu-
cleotide substitution occurs following Kimura's model with a transition/
transversion ratio (R) of 5 (see Saitou and Nei [1987] for the detail of the
simulation). The number of nucleotides per sequence used in this simu-
lation was 500. In both trees A and B, the branch lengths are measured
in terms of the number of nucleotide substitutions per site. Note that the
branch lengths of the realized tree are much more variable than those of
the model tree because of stochastic errors. The topology of the realized
tree is identical with that of tree A except for one trifurcating node that
occurred because one interior branch corresponding to branch a of the
model tree did not have any nucleotide substitution.

Figure 6.8C shows the NJ tree obtained by using the Jukes-Cantor dis-
tance for the 24 sequences that were generated by computer simulation.
Comparison of this tree with the realized tree shows that tree C has one
topological error. That is, the trifurcating node for sequences 8, 9, and 10
in the realized tree is decomposed into two consecutive bifurcating
nodes in tree C, though the branch length between the two nodes is very
close to 0. This occurred because NJ is designed to construct a bifurcat-
ing tree. Except for this minor difference, the topology of this tree is iden-
tical with that of the realized tree. The branch length estimates are also
very close to those of tree B. Note that here we used the Jukes-Cantor dis-
tance instead of the Kimura distance, which is more appropriate in the
present case. Yet, the reconstructed tree is very close to the true realized
tree. When we used the Kimura distance, we obtained a tree that was very
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FIGURE 6.8. (A) Model tree for 24 nu-
cleotide sequences. (B) A realized tree
obtained by a computer simulation with a
sequence length of n = 500.
(C) Neighbor-joining tree reconstructed by
using computer-generated sequences and
Jukes-Cantor distances. The bootstrap val-
ues (boldface) are given above the
branches, and the PC values (italics) are
given below the branches. In these trees,
the branch lengths are expressed in terms
of the number of substitutions per se-
quence (500 sites) rather than per site.
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similar to tree C, though the Kimura distance tree had slightly longer
branch lengths near the root as expected. The similarity of the two re-
constructed trees is of course due to the fact that the extent of sequence
divergence is low in the present case. We also constructed the ME and
BIONJ trees, but they had essentially the same topology and branch
lengths as those of tree C.

In the above example, the topological error of a reconstructed tree oc-
curred because one interior branch of the realized tree had no nucleotide
substitution, as mentioned above. In fact, zero-length interior branches
in realized trees are a source of topological errors in reconstructed trees,
particularly when there are many such branches. Unfortunately, we usu-
ally do not know such interior branches in real data, and therefore it is
difficult to evaluate the effect of this factor, though parsimony methods
are capable of identifying such branches under certain conditions (chap-
ter 7). However, such interior branches almost always give low bootstrap
values, whether or not the branch pattern obtained is correct. In fact, the
interior branch of the NJ trees associated with the zero-length branch in
Figure 6.8 has a bootstrap value of 26%. Therefore, if we disregard low-
bootstrap interior branches, we can conclude that the NJ, ME, and BIONJ
methods reconstruct the true tree quite accurately.

However, this happened partly because the pattern of nucleotide sub-
stitution used was relatively simple. In most DNA sequences, the actual
substitution pattern is much more complicated than the Kimura model,
and this would introduce topological errors even when d's are only mod-
erately large. For this reason, a number of statistical tests of the reliabil-
ity of an inferred tree have been developed. This problem will be dis-
cussed in chapter 9.

6.5. Distance Measures to Be Used
for Phylogenetic Reconstruction

In chapters 2-4, we discussed various distance measures for estimating
the number of nucleotide or amino acid substitutions (d) considering dif-
ferent mathematical models. In general, a distance measure based on a
complex mathematical model requires many parameters to be estimated,
and this increases the variance of the estimate of d. Theoretically, it is
possible to choose a mathematical model most appropriate for a given set
of data using certain statistical criteria. Several such statistical methods
are now available (Kishino and Hasegawa 1989; Buhner 1991; Goldman
1993; Rzhetsky and Nei 1995; Yang 1995a), but in these methods the
increment of variance by adding more parameters are not considered.
Therefore, the best distance measure identified by these criteria is not
necessarily most appropriate for reconstruction of phylogenetic trees, al-
though they are usually useful for branch length estimation.

Generally speaking, the accuracy of an inferred tree depends on at least
two factors: (1) the linear relationship of the distance used with the num-
ber of substitutions and (2) the standard error or the coefficient of varia-
tion of the estimate of the distance measure. For Kimura's (1980) model
of nucleotide substitution, several authors have attempted to produce
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112 CHAPTER 6

better distance measures than the original estimator, taking into account
these two factors (Schoniger and von Haeseler 1993; Goldstein and
Pollock 1994; Tajima and Takezaki 1994), but the practical utility of these
distance measures is still unclear.

At the present time, there is no general statistical method for choosing
an appropriate distance measure (or mathematical model) for construct-
ing tree topologies. However, computer simulations and empirical stud-
ies have led to the following guidelines for the purpose of topology con-
struction (modified from Nei 1996).

1. When the Jukes-Cantor estimate of the number of nucleotide substi-
tutions per site [d] is about 0.05 or less (d < 0.05), use the p or Jukes-
Cantor distance whether there is a transition/transversion bias or not or
whether the substitution rate (r) varies with nucleotide site or not. In this
case, the Kimura distance and more complicated distance measures give
essentially the same value as the p or Jukes-Cantor distance (Figure 3.1),
but their variances are greater than those of the latter distances. The p
distance tends to give good results, particularly when the number of nu-
cleotides or amino acids used is small.

2. When 0.05 < d < 1.0 and the number of nucleotides examined is
large, use the Jukes-Cantor distance unless the transition/transversion
ratio (R) is high, say, R > 5. When this ratio is high and the number of
nucleotides examined (n) is very large, use the Kimura distance or the
gamma distance. However, when the number of sequence is large and n
is relatively small, the p distance often gives better results unless the evo-
lutionary rate varies extensively with evolutionary lineage (Takahashi
and Nei 2000). In recent years, a number of authors have used maximum
likelihood estimates of the HKY gamma distance, apparently because in
theory this distance takes care of the GC content and transition/trans-
version biases as well as the variation in substitution rate among differ-
ent sites (e.g., Honda et al. 1999). However, computer simulations with
48 nucleotide sequences have shown that with most reasonable model
trees this distance generally gives a poorer performance than the p or the
Jukes-Cantor distance even if the HKY gamma model is used for gener-
ating sequence data (Takahashi and Nei 2000). This is because the HKY
gamma distance has a large variance compared with the p or the Jukes-
Cantor distance. When the number of nucleotides examined is very large
(>10,000) and the rate of nucleotide substitution varies extensively with
evolutionary lineage, a complicated distance measure (e.g., HKY gamma
distance) may give better results (Takezaki and Gojobori 1999).

3. When d > 1 for many pairs of sequences, the phylogenetic tree con-
structed is generally unreliable for a number of reasons (e.g., large vari-
ances of d's and sequence alignment errors). We therefore suggest that
these data sets should be avoided as much as possible. In this case, one
may eliminate the portion(s) of the gene that evolves very fast and use
only the remaining region(s) as is often done with immunoglobulin vari-
able region genes (Ota and Nei 1994a; Rast et al. 1994). One may also use
a different gene that evolves more slowly.

4. Many distance measures for estimating the number of nucleotide
substitutions per site (d) often becomes inapplicable when the distance
is very large and n is small. This happens because the mathematical for-
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mulas for distance estimation usually involve logarithmic terms, and the
arguments of the logarithms often become negative. Theoretically, this
problem can be avoided by expanding the logarithmic terms into an in-
finite series, but the variance of the distance estimated in this way is quite
large (Tajima 1993b; Rzhetsky and Nei 1994). Therefore, highly divergent
sequences should not be used for topology construction. In this case the
p distance is often more efficient for obtaining a reliable topology, be-
cause it is always applicable and has a smaller variance.

5. When a phylogenetic tree is constructed from the coding regions of
a gene, the distinction between synonymous (ds) and nonsynonymous
(dN) substitutions may be helpful, because the rate of synonymous sub-
stitutions is usually much higher than that of nonsynonymous substitu-
tion. When relatively closely related species are studied for a large num-
ber of codons and ds < 0.5, one may use ds for constructing a tree. This
procedure is expected to reduce the effect of variation in substitution rate
among different sites, because synonymous substitutions are subject to
selection less often than nonsynonymous substitutions. However, when
relatively distantly related species are studied, dN or amino acid dis-
tances seem to be better. Note also that ds or ps sometimes reaches the
saturation level rather quickly (chapter 5).

6. As a general rule, if two distance measures give similar distance val-
ues for a set of data, use the simpler one because it has a smaller vari-
ance. When the rate of nucleotide substitution is nearly the same for all
evolutionary lineages and there is no strong transition/transversion bias,
the p distance seems to give correct trees more often than other distances,
even if sequence divergence is high (Schoniger and von Haeseler 1993;
Tajima and Takezaki 1994; Takahashi and Nei 2000). When the substitu-
tion rate varies with evolutionary lineage, however, this may not be the
case. It is important not to trust computer outputs of tree construction
without scrutinizing the pattern of nucleotide or amino acid substitution,
differences in nucleotide frequencies among the first, second, and third
codon positions, temporal changes of nucleotide frequencies, and so
forth. In real data analysis, there are so many unknown factors that the
phylogenetic tree produced should be interpreted with caution and com-
mon sense.

Note that the above guidelines are for constructing phylogenetic trees.
For estimating branch lengths or evolutionary times, unbiased estimators
are generally better than biased estimators.
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