
Phylogenetic Inference: Maximum
Parsimony Methods

Maximum parsimony (MP) methods were originally developed for mor-
phological characters (Henning 1966), and there are many different ver-
sions (Wiley 1981; Felsenstein 1982; Wiley et al. 1991; Maddison and
Maddison 1992; Swofford and Begle 1993). In this book, we consider
only the methods that are useful for analyzing molecular data. Eck and
Dayhoff (1966) seem to be the first to use an MP method for constructing
trees from amino acid sequence data. Later, Fitch (1971) and Hartigan
(1973) developed a more rigorous MP algorithm for nucleotide sequence
data. In these MP methods, four or more aligned nucleotide (or amino
acid) sequences (m > 4) are considered, and the nucleotides (amino
acids) of ancestral taxa are inferred separately at each site for a given
topology under the assumption that mutational changes occur in all di-
rections among the four nucleotides (or 20 amino acids). The smallest
number of nucleotide (or amino acid) substitutions that explain the en-
tire evolutionary process for the topology is then computed. This com-
putation is done for all potentially correct topologies, and the topology
that requires the smallest number of substitutions is chosen to be the best
tree. The theoretical basis of this method is William of Ockham's philo-
sophical idea that the best hypothesis to explain a process is the one that
requires the smallest number of assumptions. Sober (1988) states that the
less we need to know about the evolutionary process to make a phyloge-
netic inference, the more confidence we can have in our conclusions. In
this chapter, we are primarily concerned with nucleotide sequences, but
the same approach can be used for amino acid sequences as well.

If there are no backward and no parallel substitutions (no homoplasy)
at each nucleotide site and the number of nucleotides examined (n) is
very large, MP methods are expected to produce the correct (realized)
tree. In practice, however, nucleotide sequences are often subject to back-
ward and parallel substitutions, and n is rather small. In this case, MP
methods tend to give incorrect topologies (chapter 9). Furthermore, Fel-
senstein (1978) has shown that when the rate of nucleotide substitution
varies extensively with evolutionary lineage, MP methods may generate
incorrect topologies even if an infinite number of nucleotides are exam-
ined. Under certain conditions, this can happen even when the rate
of substitution is constant for all lineages (Hendy and Penny 1989;
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116 CHAPTER?

Zharkikh and Li 1993; Takezaki and Nei 1994; Kim 1996). In this case,
long branches (or short branches) of the true tree tend to join together or
attract each other in the reconstructed tree (chapter 9). Therefore, this
phenomenon is often called long-branch attraction (Hendy and Penny
1989) or short-branch attraction (Nei 1996). In parsimony analysis, it is
also difficult to treat the phylogenetic inference in a statistical frame-
work, because there is no natural way to compute the means and vari-
ances of the minimum numbers of substitutions obtained by the parsi-
mony criterion.

Nevertheless, MP methods have some advantages over other tree-
building methods. First, they are relatively free from various assump-
tions that are required for nucleotide or amino acid substitution in dis-
tance or likelihood methods. Since any mathematical model currently
used is a crude approximation to reality, model-free MP methods may
give more reliable trees than other methods when the extent of sequence
divergence is low (Miyamoto and Cracraft 1991). In fact, computer sim-
ulation has shown that when (1) the extent of sequence divergence is low
(d ^ 0.1), (2) the rate of nucleotide substitution is more or less constant,
and (3) the number of nucleotides examined is large, MP methods are of-
ten better than distance methods in obtaining the true topology (Sourdis
and Nei 1988; Nei 1991). Furthermore, parsimony analysis is very use-
ful for some types of molecular data such as insertion sequences and in-
sertions/deletions, as will be discussed later.

There are many different versions of MP methods even just for molec-
ular data, but they can be divided into unweighted MP and weighted MP
methods. In unweighted MP methods, nucleotide or amino acid substi-
tutions are assumed to occur in all directions with equal or nearly equal
probability. In reality, however, certain substitutions (e.g., transitional
changes) occur more often than other substitutions (e.g., transversional
changes). It is therefore reasonable to give different weights to different
types of substitutions when the minimum number of substitutions for a
given topology is to be computed. MP methods incorporating this feature
are weighted MP methods. In the following, we first consider unweighted
MP methods.

7.1. Finding Maximum Parsimony (MP) Trees

Estimation of the Minimum Number
of Substitutions

Let us now explain how to count or estimate the minimum number of
substitutions for a given topology. We consider the topology of a rooted
tree for six DNA sequences (1, 2,. . . , 6) given in Figure 7.1 A and assume
that the nucleotides at a given site for the six extant sequences are as
given at the exterior nodes of the tree. There are one C, three T's and two
A's. From these nucleotides, we can infer the nucleotides for the five an-
cestral taxa (nodes) a, b, c, d, and e. The nucleotide at node a must be ei-
ther C or T if we consider the minimum possible number of substitutions.
The nucleotide at node b is inferred to be T, whereas the nucleotide at
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PHYLOGENETIC INFERENCE: MAXIMUM PARSIMONY METHODS 117

FIGURE 7.1. Nucleotides in six extant sequences and the possible nucleotides in
five ancestral sequences.

node c must be A or T. Node d is expected to have T, because its imme-
diate descendant nodes (a and c) both have T. Finally, we infer the nu-
cleotide at node e to be either A or T. It is now clear that the minimum
number of nucleotide substitutions for this set of taxa can be obtained by
assuming that all the ancestral nodes had nucleotide T. The number is
three. However, this set of nucleotides at the ancestral nodes (pathway)
is not the only possible set that explains the evolutionary change of nu-
cleotides.

If we assume that nodes a, c, d, and e all have A and node b has T,
the number of substitutions required is again three (see Figure 7.IB).
Actually, there are three more pathways that are possible with the same
minimum number of substitutions. They are: (a - T, b - T, c - A, d -
A, e - A), (a - C, b - T, c - A, d - A, e - A), and (a - T, b - T, 
d - T, e - A). These results show that the nucleotides at the ancestral
nodes cannot always be determined uniquely, and all the nucleotides
listed in Figure 7.IB are parsimonious ones. However, it is possible to
count the minimum number of substitutions required. It is three for all
of the above cases.

In the above example, we considered a rooted tree. However, the tree
can be transformed into an unrooted tree by eliminating the apex node
e. Elimination of this node does not change the minimum number of sub-
stitutions, but the number of possible pathways is reduced. For example,
the two possibilities (e - T, d - T, c - T, b - T, a - T) and (e - A,
T, c — T, b — T, a — T) are no longer distinguishable, because node e can
be either T or A. In the present case, the total number of pathways for the
unrooted tree is four. Because MP methods do not determine the root of
the tree, unrooted trees are usually considered.

In the above example, the minimum number of substitutions was three,
and there were four equally parsimonious pathways for the unrooted
tree. Computation of these numbers was relatively easy in this case,
but as the number of taxa increases, it becomes increasingly cumber-
some. Therefore, all these computations are done by a computer using
the above rule. The basic algorithm for these computations was devel-
oped by Fitch (1971) and Hartigan (1973).
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118 CHAPTER?

Tree Lengths

In the above example, we considered only one topology, but in practice
we have to consider all potentially correct topologies and determine the
topology that requires the smallest minimum number of substitutions.
Let us now consider this problem using the trees given in Figure 7.2 and
assuming that taxa 1,2, and 3 all have nucleotide A but taxa 4, 5, and 6
have G, G, and T, respectively. The trees given in the figure all consist
of six taxa, but the topologies are not necessarily the same. We again con-
sider a particular nucleotide site and compute the minimum number of
substitutions required. In topology A, this number is obviously two.
Topology B, in which taxa 3 and 4 are interchanged, requires at least
three substitutions. Of course, there are several equally parsimonious
pathways, and another pathway that requires three substitutions is
given in tree C. Tree D has a different topology and requires at least three
substitutions. However, in the case of six taxa, there are 105 different
topologies, so we have to compute the minimum number of substitu-
tions required for all topologies. If this computation is done for all sites
and for all topologies, we can compute the sum of the minimum num-
bers of substitutions over all sites for each topology. This sum (L or TL)
is called the tree length. The maximum parsimony (MP) tree is the topol-
ogy that has the smallest tree length. In practice, it is possible that two
or more different topologies have the same minimum number of substi-
tutions. In this case, we cannot determine the final topology uniquely,
and all equally parsimonious MP trees are considered as potentially cor-
rect topologies.

FIGURE 7.2. Assignment of mutations to different branches at a parsimony-
informative site.
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PHYLOGENETIC INFERENCE: MAXIMUM PARSIMONY METHODS 119

Informative Sites and Homoplasy

In the search for MP trees, nucleotide or amino acids sites that have the
same nucleotide for all taxa (invariable sites) are eliminated from the
analysis, and only variable sites are used. However, not all variable sites
are useful for finding an MP tree topology. Any nucleotide site at which
only unique nucleotides (singletons) exist is not informative, because the
nucleotide variation at the site can always be explained by the same num-
ber of substitutions in all topologies. Such a site is called a singleton site.
For example, tree A in Figure 7.3 has three singleton substitutions C, T,
and G and requires three substitutions, but the same number of substi-
tutions is required for any other topology. This can be seen from trees B,
C, and D in Figure 7.3. In all these trees (topologies), the three singleton
substitutions can be assigned to exterior branches. In some topologies,
however, we can assign singleton substitutions to both exterior and in-
terior branches. In Figure 7.3, the topologies of trees D, E, and F are the
same but have different assignments of mutational changes to different
branches. However, the total number of substitutions is always three.
Therefore, this site is not informative for identifying MP trees.

For a nucleotide site to be informative for constructing an MP tree,
there must be at least two different kinds of nucleotides, each repre-
sented at least two times. These sites are called informative sites (Fitch
1977). In trees A, B, C, and D of Figure 7.2, the nucleotide site satisfies
this condition, and thus it is useful for finding the topology with the min-
imum number of substitutions. However, note that singleton sites are in-
formative for topology construction in other tree-building methods.
Actually, even invariable sites have some phylogenetic information in
distance and maximum likelihood methods. So, Fitch's terminology
"phylogenetically informative sites" is not very appropriate. For this rea-
son, we call these sites parsimony-informative sites.

In the construction of MP trees, it is sufficient to consider only parsi-
mony-informative sites. However, some authors include singleton sub-

FIGURE 7.3. Assignment of mutations to different branches at a noninformative
site.
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120 CHAPTER 7

stitutions in the computation of tree lengths. This addition of singleton
substitutions to the tree length for parsimony-informative sites does not
affect the identification of the MP tree, because the number of singleton
substitutions is the same for all topologies. Nevertheless, one should be
cautious about the tree length of a published tree and should know
whether it is based on only parsimony-informative sites or all variable
sites.

Because only informative sites contribute to finding MP trees, it is im-
portant to have many informative sites to obtain reliable MP trees.
However, when the extent of homoplasy (backward and parallel substi-
tutions) is high, MP trees would not be reliable even if there are many in-
formative sites available. For this reason, Kluge and Farris (1969) pro-
posed a quantity called the consistency index to measure the extent of
homoplasy. This index for a single nucleotide site (Mh site) is given by
ci = irij/Sj, where mi is the minimum possible number of substitutions at
the site for any conceivable topology, and si is the minimum number of
substitutions required for the topology under consideration. The mini-
mum possible number of substitutions (my) is one fewer than the num-
ber of different kinds of nucleotides at the site, assuming that one of the
observed nucleotides is ancestral. For example, there are three different
nucleotides in tree A of Figure 7.2. Therefore, mi = 2. For this topology,
si is also equal to 2, so ci = 1. This indicates that the nucleotide config-
uration at this site is supportive of tree A under the MP principle. By con-
trast, si = 3 for topologies B, C, and D, so ci - 2/3. Therefore, these topolo-
gies are not well supported.

However, the lower bound of the consistency index is not 0, and cj

varies with topology. For this reason, Farris (1989) proposed two more
quantities called the retention index (see also Archie 1989) and the
rescaled consistency index. The retention index is given by ry = (gi — sy)/
(gy - my), where gf is the maximum possible number of substitutions at
the i-th site for any conceivable tree under the parsimony principle and
is equal to the number of substitutions required for a star topology when
the most frequent nucleotide is placed at the central node. Diagram E in
Figure 7.2 shows such a tree, and in this tree g.= 3. The retention index
becomes 0 when the site is least informative for MP tree construction,
that is, sf = gr In the examples of Figure 7.2, we have ri = (3 - 2)/(3 -
2) = 1 for tree A and r. = (3 - 3)/(3 - 2) = 0 for trees B, C, and D.
Therefore, the site under consideration is supportive of tree A but not of
the other trees. By contrast, the rescaled consistency index (rcy) is given
by ricr That is,

This index also is 1 for tree A and 0 for trees B, C, and D. In the present
case, therefore, rci is identical with ry, but this is not always the case.

In the above discussion, we considered c., rit and TC. for one site. In
practice, however, these values are computed for all informative sites,
and the ensemble or overall consistency index (CI) overall retention in-
dex (RI), and overall rescaled index (RC) for all sites are considered.
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PHYLOGENETIC INFERENCE: MAXIMUM PARSIMONY METHODS 121

These indices are defined as CI = S .̂/S .̂, RI =
2 .̂), and RC = CI X RI, respectively, where i refers to the i-th informa-
tive site. These indices should be computed only for informative sites,
because for uninformative sites ci becomes 1 and rf and ici are undefin-
able. These indices are often used as a measure of accuracy of the topol-
ogy obtained, particularly for an MP tree obtained from morphological
characters. In systematics, HI = 1 - CI is called the homoplasy index.
When there are no backward and no parallel substitutions, we have CI =
1 and HI - 0. In this case, the topology is uniquely determined.

Example 7.1. MP Trees for Five Hominoid Species

Let us again consider the DNA sequences given in Figure 6.1 and con-
struct the MP tree. In this data set, if we exclude site 560, in which a dele-
tion exists, there are 281 variable sites of which 90 are parsimony infor-
mative. Using these informative sites, we can compute the tree lengths
(L) for all the topologies. Only three topologies (B(O(G(C, H)))), (B(O(H(G,
C)))), and (B(O(C(G, H)))) have L = 148 or less, and all others have much
larger L values (Brown et al. 1982). The L values for the three topologies
are 147, 145, and 148, respectively, and therefore the topology (B(O(H(G,
C)))) is the MP tree. The branch length estimates of this tree are given in
Figure 7.4B. The topology of this tree is different from that of the trees
obtained by distance methods (Figure 6.2). However, the difference be-
tween the two topologies is one branch interchange (dT = 2), and the L
value differs only by 2. Therefore, the difference is unlikely to be signif-
icant. When the entire sequences of mitochondrial DNA are used, we ob-
tain the same topology as that of the trees in Figure 6.2 (Horai et al. 1995).
Another reason why we obtained an erroneous tree seems to be that in
this case the transition/transversion ratio is high. In fact, if we use a
weighted parsimony method described later, we obtain the same topol-
ogy as that of the distance trees (Figure 7.4D).

FIGURE 7.4. A-C. Three possible trees (topologies) for the human (H), chimpanzee
(C), gorilla (G), orangutan (0), and gibbon (B). These trees were obtained from the
DNA sequence data in Figure 6.1. The number given to each topology is the tree
length for parsimony-informative sites. The number in parentheses refers to the
tree length for all variable sites. D. Maximum parsimony tree obtained when
transversions are given six times the weight of the transitional substitutions. Only
the branching pattern is shown in D. The overall consistency index (CI) is 0.67,
0.68, and 0.67 for trees A, B, and C, respectively, whereas the overall retention
index (RI) is 0.47, 0.49, and 0.46 for the three trees.
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122 CHAPTER 7

We have also computed the overall consistency index (CI) and the
overall retention index (RI) for the three topologies. The CI values for
trees A, B, and C were 0.67, 0.68, and 0.67, respectively. Therefore, the
differences in CI between the three trees are very small. By contrast, the
Revalues for the three trees were 0.47, 0.49, and 0.46, respectively. These
values are negatively correlated with the tree lengths.

7.2. Strategies of Searching for MP Trees

When the number of sequences or taxa (m) is small, say, 221 < 10, it is pos-
sible to compute the tree lengths of all possible trees and determine the
MP tree. This type of search for MP trees is called the exhaustive search.
As previously mentioned, the number of topologies rapidly increases as
m increases (Equation [5.1]). Therefore, it is virtually impossible to ex-
amine all topologies if 211 is large. However, if we know clearly incorrect
topologies, as in the case of the five hominoid species in Figure 6.1, we
do not have to compute the L values for them. We can simply compute
L's only for potentially correct trees. This type of search is called the spe-
cific-tree search.

There are two ways of obtaining MP trees when m > 10 and the spe-
cific-tree search is not applicable. One is to use the branch-and-bound
method (Hendy and Penny 1982). In this method, the trees that obviously
have a tree length longer than that of a previously examined tree are all
ignored, and the MP tree is determined by evaluating the tree lengths for
a group of trees that potentially have shorter tree lengths. This method
guarantees finding of all MP trees, although it is not an exhaustive search.
However, even this method becomes very time-consuming if m is about
20 or larger. In this case, one has to use another approach called the
heuristic search. In this method, only a small portion of all possible trees
is examined, and there is no guarantee that the MP tree will be found.
However, it is possible to enhance the probability of obtaining the MP
tree by using several algorithms.

Branch-and-Bound Search

After the branch-and-bound method was introduced by Hendy and Penny
(1982) in parsimony analysis, several different versions were developed
(Swofford and Begle 1993). The differences in algorithm and efficiency
among them are rather small, and here we present Kumar et al.'s (1993)
version. In this version of the branch-and-bound method, the search for
an MP tree starts with an initial core tree of three taxa, which has only
one unrooted tree (tree A in Figure 7.5). The remaining taxa are added to
this core tree one by one according to a certain order, and the tree length
of the new tree is computed at each stage of taxon addition. If the addi-
tion of a taxon to a particular branch of a core tree results in a tree length
greater than a predetermined upper bound of tree length (L^), this topol-
ogy and all the subsequent topologies that can be generated by adding
more taxa to this core tree are ignored from further consideration.
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PHYLOGENETIC INFERENCE: MAXIMUM PARSIMONY METHODS 123

FIGURE 7.5. Diagrams showing the procedures of the branch-and-bound and the
heuristic branch-and-bound-like searches.

Core Tree and Order of Taxon Addition

The initial core tree of three taxa is chosen such that the length (L) of the
tree is largest or approximately largest among all possible three-taxon
trees (Figure 7.5). This is to make L closer to the length (LM) of the MP
tree so that we can reach the MP tree faster. The next step is to determine
the order of taxon addition that makes the search for the MP tree faster.
To do this, we place one of the remaining taxa on one of the three
branches of the initial core tree and compute the tree length by the MP
procedure. We repeat this computation for the two remaining branches

Nei, Masatoshi, and Sudhir Kumar. Molecular Evolution and Phylogenetics, Oxford University Press, Incorporated, 2000. ProQuest
         Ebook Central, http://ebookcentral.proquest.com/lib/oist-ebooks/detail.action?docID=430494.
Created from oist-ebooks on 2018-09-26 18:58:57.

C
op

yr
ig

ht
 ©

 2
00

0.
 O

xf
or

d 
U

ni
ve

rs
ity

 P
re

ss
, I

nc
or

po
ra

te
d.

 A
ll 

rig
ht

s 
re

se
rv

ed
.



124 CHAPTER 7

and record the minimum value of the three tree lengths. We repeat this
procedure for all remaining taxa. We then find the taxon that shows the
maximum value of the minimum tree lengths. This taxon is the first to
be added to the initial core tree. We call this procedure the maxiimim-
of-the-minimum-values algorithm or simply the max-mini algorithm.
To find the next taxon, we apply this max-mini algorithm for the re-
maining taxa using the tree for the first four taxa as the next core tree. In
this case, of course, the number of minimum tree lengths to be computed
for each taxon is five, because a four-taxon tree has five branches. We
can then find a taxon that shows the maximum of the minimum tree
lengths. This taxon will be the second one to be added to the initial core
tree of three taxa. This process is repeated until the addition order of all
taxa is determined. Since the maximum of the minimum values is closer
to LM than many other value (e.g., the minimum of the minimum val-
ues), this order of taxon addition is expected to speed up the search for
the MP tree.

Search for MP Tree(s)

Once the initial core tree and the order of taxon addition are determined,
we are in a position to search for the MP tree. Before starting this search,
we must have a predetermined upperbound of tree length, that is, L^for
a temporary MP tree. This value is a temporary minimum number of sub-
stitutions, which is likely to be slightly larger than the real minimum
number, LM. We determine this value by running the heuristic search
called the stepwise addition or the branch-and-bound-like algorithm.

Let us now explain the algorithm for finding the MP tree by using the
diagrams in Figure 7.5. We start with the initial core tree in diagram A.
In this example of five taxa, taxa a, b, and c form the initial core tree, and
taxa d and e are added in this order. There are three ways of adding d to
the core tree (trees B, C, and D). We first compute the tree length (L) for
tree B. If this L is greater than Lv, we ignore all the subsequent trees that
are generated by adding taxon e to this tree (five trees given in column
E). If L < LJJ, we add e to each of the five branches of tree B to form five
different trees with five taxa. We again compute L for each of these five
trees and find a tree (or trees) that shows the smallest L value. If this L is
greater than Lut then we move on to tree C. However, if L is equal to Ln

for a tree, we save the tree as another potential MP tree and move on to
tree C. If a tree (or trees) in column E has an L smaller than Lv, then this
tree will become the next temporary MP tree, and Lv is now replaced by
this new L value. We then move to tree C. We apply the same procedure
to tree C and the trees generated by adding e to tree C. If all these trees
are examined, we then move to tree D and its descendant trees. Since we
adjust LJJ whenever we find a tree with an L smaller than the previous
Lv, we are assured of finding the MP tree. Of course, there may be two or
more equally parsimonious trees, and in this case all these trees are iden-
tified by the present method. The same algorithm can be used for the case
where the number of taxa (m) is greater than five. This algorithm saves
computer time considerably, because many trees need not be examined
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if LJJ is sufficiently close to the tree length (LM) of the true MP tree(s).
However, even this method becomes time-consuming when m ^ 20.

Heuristic Search

Several algorithms of the heuristic search for MP trees are now available
(see Maddison and Maddison 1992; Swofford and Begle 1993), but many
of them are based on the same principle. In these algorithms, a provi-
sional MP tree is first constructed by using a procedure called the step-
wise addition algorithm, and this provisional MP tree is then subjected
to some kind of branch swapping to find a more parsimonious tree. In
the following, we first explain the principle of the stepwise addition al-
gorithm and then branch swapping procedures. In addition, we present
one more heuristic search algorithm whose principle is different from
that of the traditional ones.

Stepwise Addition Algorithms

In this set of algorithms, an initial core tree of three taxa is first formed
according to a certain rule, and each of the remaining taxa is then cho-
sen for the next taxon addition. This taxon is connected to one of the
three branches of the initial core tree, and the tree lengths of the three re-
sulting trees are evaluated. After this evaluation, the tree of four taxa
whose tree length is shortest is saved for the next step of taxon addition.
The next taxon is then connected to each of the five branches of the four-
taxon tree, and the five-taxon tree whose tree length is shortest is chosen.
This process is continued until a tree of all taxa is produced. This final
tree is the provisional MP tree. This provisional MP tree usually has a
longer tree length than that (LM) of the MP tree. Therefore, this tree is sub-
jected to branch swapping procedures to find a tree that has a smaller L
value. Application of several rounds of branch swapping usually pro-
duces a tree whose branch length is considerably shorter than that of the
provisional tree, and this tree is regarded as the MP tree.

Swofford and Begle (1993) describe various ways of producing the pro-
visional MP tree considering the order of taxon addition. The simplest
one is the "as is" option, in which the initial core tree is produced by the
first three taxa given in the data set, and the following taxon addition is
done according to the taxon order in the data set. Usually this method is
not very effective for finding a tree with a small L. The second simplest
method is the "random" option, where pseudorandom numbers are used
to determine the order of taxon addition, and this procedure is applied
many times to obtain a provisional MP tree. Another one is called the
"closest" option, in which the initial core tree is produced by examining
all triplets of taxa and choosing the one that shows the smallest L, and in
the following steps, a taxon whose addition to the previous core tree
shows the smallest increase in L is chosen. The reader should refer to
Swofford and Begle (1993) for details of these options. All of these op-
tions are included in the software PAUP*, whereas PHYLIP primarily
uses the second (Jumble) option. Once a provisional MP tree is produced,
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126 CHAPTER 7

the tree is subjected to one or two of the following algorithms of branch
swapping.

Branch Swapping

The most popular algorithms of branch swapping are (1) nearest neigh-
bor interchanges (NNI), (2) subtree pruning regrafting (SPR), and (3) tree
bisection-reconnection (TBR) (Swofford and Begle 1993). The first algo-
rithm is the same as the examination of all trees that are different from
the provisional MP tree by a topological distance of dT = 2 (Figure 7.6A).
For example, for the five-taxon tree in Figure 7.6A, there are two alter-
native trees (interchanges of taxa 2 and 3 and taxa 1 and 3) with a topo-
logical distance of dT = 2 from the original tree when the interior branch
a is considered. Two more alternative trees can be produced if we con-
sider the interior branch b. This algorithm is obviously related to the
close neighbor interchange (CM) algorithm described in relation to the
ME method (chapter 6). In the latter algorithm, the trees that are differ-
ent from the provisional tree by dT = 2 and 4 are examined, and this
search is repeated until no tree with a smaller L is found. Therefore, this
algorithm examines more trees than the NNI search.

In the SPR algorithm, a branch of a provisional tree is cut into two
parts, a pruned subtree and the residual tree. The cutting point of the
pruned subtree is then grafted onto each branch of the residual tree to
produce a new topology. This is done for all branches of the residual tree
to produce more trees to be examined. This is illustrated in Figure 7.6B.
In this example, the exterior branch a was cut, and the pruned subtree
consists of taxon 1 only, whereas the residual tree is composed of taxa 2,
3,4, and 5. There are four ways of grafting the subtree to the residual trees
in this case. If the interior branch b is cut instead, the subtree is grafted
to two exterior branches (4 and 5) of the residual tree to produce two al-
ternative trees. This procedure can be used for a tree of any number of
taxa.

In the TBR search, a provisional tree is cut into two subtrees at a
branch, and these two subtrees are then reconnected by joining two
branches, one from each subtree, to generate a different topology (Figure
7.6C). This is tried for all possible pairs of branches of the two subtrees
to generate many different topologies. In the SPR search, only the cutting
point of a subtree was regrafted to a branch of the residual tree, whereas
in the TBR search all combinations of branches from the two subtrees are
considered for reconnection. Therefore, the number of topologies gener-
ated is larger than that generated by the SPR search when the number of
taxa is greater than five.

Since the TBR search examines a larger number of trees than the NNI
and SPR searches, many investigators use this method. However, even
this method examines only a limited number of trees when the number
of taxa is large (Maddison 1991). One way to increase the number of trees
to be examined is to use the "random" option of stepwise addition and
the TBR search repeatedly. If this approach is used a large number of
times, the chance of finding the MP or a suboptimal MP tree is quite high.
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FIGURE 7.6. Three different methods of branch swapping for finding MP trees.

Branch-and-Bound-Like Algorithm

Kumar et al. (1993) proposed a heuristic search algorithm, which is con-
ceptually different from the algorithms mentioned above but is similar
to the branch-and-bound method. In this algorithm, we start with an ini-
tial core tree of three taxa that is determined as in the case of the branch-
and-bound method. The order of taxon addition is also determined in
a similar fashion except for the following. In the branch-and-bound
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128 CHAPTER 7

method, we computed the minimum numbers of substitutions for all taxa
for each core tree (each step of taxon addition) and then chose the taxon
that showed the maximum value among all the minimum values. For this
heuristic search, which may be called the min-mini algorithm, we
choose the minimum of all the minimum values, because we are not go-
ing to do a semiexhaustive search as in the case of the branch-and-bound
method and want to reach the MP or a suboptimal MP tree relatively
quickly.

The algorithm of searching for the MP tree is also similar to that of the
branch-and-bound method. Let us again consider Figure 7.5 to explain
this algorithm. As before, we start with the core tree A and first connect
taxon d to branch c to produce tree B. We then compute the tree length
(L) of this tree. We call this L value the local upperbound (La) for the first
taxon addition and keep this value for future use. We then connect taxon
e to branch a of tree B to produce tree E (1). We again compute the L value
of this tree and call it the local upperbound (L2) for the second taxon ad-
dition. If there is another taxon (/) to be added, we connect this taxon to
branch a of tree E (1) and obtain tree E (1,1) in Figure 7.7. If/is the last
taxon to be added, we now compute the L value not only for tree E (1,1}
but also for all other six trees that can be derived from tree E (1). We then
choose the tree that shows the smallest Lvalue among the seven trees and
call it a temporary MP tree. The L for this tree is the temporary upper-
bound (Ljj) in this case.

The next step is to go back to tree E (2) in Figure 7.5 and compute the
L value. If this L is greater than L2, we neglect all trees that can be gener-
ated by adding /to this tree. If L = L2, we compute L for all the descen-
dant trees. If any of the descendant trees show an L equal to Lv, the tree
is saved as another potential MP tree. If there is any tree showing an L
less than Lv, this tree now becomes a new temporary MP tree, and the
previous L^is replaced by this L. By contrast, if tree E (2) shows an L less
than L2, L2 is replaced by this L. The L values for all descendant trees are
then computed, and a new potential MP tree or a new temporary MP tree
is searched for. This procedure is applied to the remaining three trees E
(3), E (4), and E (5) of five taxa, and the temporary MP tree (or trees) that
shows the smallest L value among the 35 (= 5 X 7) trees derived from
tree B is determined.

If the above computation is completed, we now move on to tree C (and
tree D) in Figure 7.5 and apply the same procedure to all trees that can
be derived from these trees. When this is completed, we have the final
tree or trees. When there are more than six taxa, essentially the same al-
gorithm is applied. The only difference is that there are many steps of
taxon addition and that at each step of taxon addition the local upper-
bound (L^,L2,L3,. . ., Lm_3, or Ln) is computed, where m is the number
of taxa. LI( L2, L3,. . . , Lm_4, and Lv are then used to determine whether
a group of descendant trees should be ignored or not in later computa-
tions.

In this algorithm, many trees that are unlikely to have a small L value
are ignored, and thus the algorithm speeds up the search for the MP tree.
However, the final tree or trees obtained by this algorithm may not be the
true MP tree(s), because the upperbounds of the L values used here are
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FIGURE 7.7. All possible trees that can be generated by adding taxon/to tree E(1)
in Figure 7.5.

local upperbounds rather than the global upperbound as used in the
branch-and-bound method, and the tree with the global minimum value
of L may not have been obtained.

There is a way to improve the efficiency of finding the MP tree. It is to
increment the local upperbound at each step of taxon addition. If the
local upperbound is large, the number of trees to be examined automat-
ically increases. In the above algorithm, the local upperbound at the Mh
step of taxon addition was Lf except for the first step. We now increase
L. by X; so that the upperbound is given by L/ = Li + xf. If xf is large for
all i's, a large number of topologies will be examined. In this case, how-
ever, the computational time will be prohibitively large. We call xi a
search factor. In the default option of MEGA, x{ = 2 is used for all steps,
but the user may change it as desired. MEGA2 has another option, in
which x. is defined as x} = p(Li+l — L.), where Lf and Ly+1 are the upper-
bound of! for the Mh and the (i + l)-th steps, and p is the fraction of Li+^
- Li that one wishes to use. Suppose Ly+1 = 200 and Li = 180, and one
wishes to use p = 0.1. Then, xf becomes 2. We call the p value a propor-
tional search factor. The optimum p value varies with data set, and the
user of MEGA2 may find it by trial and error.

Some Remarks

As mentioned earlier, MP methods tend to give incorrect topologies
when the number of sequences used (m) is large and the number of nu-
cleotides used (n) is small. In this case, one may choose an incorrect
topology by making an excessive effort to find the real MP tree. When m
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130 CHAPTER 7

is large, some parts of the MP tree (or any other tree) are likely to be in-
correct, and a submaximum parsimony tree may be as good as the MP
tree in finding the true topology. For this reason, Nei et al. (1998) sug-
gested that a relatively crude method of finding MP or potential MP trees
gives essentially the same conclusion about phylogenetic inference as
the exhaustive search when the accuracy of the tree obtained is exam-
ined by the bootstrap test. In fact, our computer simulation (Takahashi
and Nei 2000) has shown that for randomly generated model trees of 48
sequences with n = 1000 the NNI search of MP trees is as efficient as the
TBR search in inferring the true tree. This indicates that MP trees are of-
ten incorrect and that there is no need to spend an enormous amount of
computer time for obtaining MP trees.

7.3. Consensus Trees

Strict and Majority-Rule Consensus Trees

As mentioned above, MP methods often produce several equally parsi-
monious trees. In this case, it is difficult to present all the trees for pub-
lication. One way to solve this problem is to make a composite tree that
represents all the trees. Such a composite tree is called a consensus tree.

There are several different types of consensus trees (Swofford and
Begle 1993), but the most commonly used ones are the strict consensus
trees and the majority-rule consensus trees. Let us explain these trees us-
ing the examples given in Figure 7.8. Suppose that trees A, B, and C are
three equally parsimonious trees obtained by an MP method. In a strict
consensus tree, any conflicting branching patterns for a set of sequences
among the rival trees are resolved by forming a multinircating branching
pattern. Thus, the strict consensus tree for trees A, B, and C is given by
tree D. Among the majority-rule consensus trees, the most commonly
used is the 50% majority-rule consensus tree. In this tree, a branching

FIGURE 7.8. Examples of consensus trees.
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pattern that occurs with a frequency of 50% or more is adopted. In the
present example, the branching pattern ((a, b) c] for taxa a, b, and c oc-
curs two times among the three rival trees, so this pattern is adopted.
Similarly, branching pattern ((e, f) d) occurs two times among the three
trees. Therefore, the 50% majority-rule consensus tree is given by tree E.
It is possible to increase the majority-rule percentage. For example, if we
use 70%, none of the branching patterns of the two three-taxon clusters
reaches 70%. Therefore, the 70% majority-rule consensus tree (tree F) is
identical with the strict consensus tree. Note that the 100% majority-rule
consensus tree is always identical with the strict consensus tree.

Bootstrap Consensus Trees

One of the effective ways of testing the reliability of an MP tree is to use
the bootstrap test, which will be discussed in chapter 9. In this test, the
reliability of an inferred tree is examined by using Efron's bootstrap re-
sampling techniques. A set of nucleotide sites is randomly sampled with
replacement from the original set, and this random set that has the same
number of nucleotide sites as that of the original set is used for con-
structing a new tree. The topology of this tree may be or may not be the
same as that of the inferred tree. This process is repeated many times
(over 100 times), and the reliability of the inferred tree is evaluated by
the percentage of times in which each branching pattern (sequence par-
tition) is found among all the replicate bootstrap trees (see chapter 9 for
details).

Felsenstein (1985) proposed to construct a consensus tree from the
replicate bootstrap trees and use it as a new inferred tree. This new in-
ferred tree may be different from the original inferred tree, but since it is
an "average" tree of many bootstrap trees, it may be more reliable than
the original one, though there is no proof. In the case of MP trees, this
procedure also has an advantage to avoid multifurcating trees by pro-
ducing a low-percentage majority-rule consensus tree. In Figure 7.8, we
saw that the 50% majority-rule tree for trees A, B, and C is a bifurcating
tree. If we have several hundred bootstrap trees and if we make a 5% ma-
jority rule consensus tree, the tree will be almost always a bifurcating
tree.

7.4. Estimation of Branch Lengths

MP methods are often used to construct a tree topology without branch
lengths. However, it is possible to estimate the branch lengths of a re-
constructed tree under certain assumptions, and these estimates should
be presented for an MP tree as much as possible.

The branch lengths of an MP tree are estimated by considering all evo-
lutionary pathways at each variable site and computing the average num-
ber of substitutions for each exterior or interior branch. When there is
only one singleton substitution at a site, this substitution can always be
assigned to the exterior branch leading to the taxon that has the substi-
tution. When there are two or more singleton substitutions, there are sev-
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132 CHAPTER 7

FIGURE 7.9. Assignment of substitutions to different branches when there are two
or more singleton substitutions.

eral ways of assigning the substitutions (evolutionary pathways). For ex-
ample, Figure 7.9 shows a case of two singleton substitutions, in which
there are three different evolutionary pathways, and the average number
of substitutions for each of the branches b - c, c - 4, and c — 5 is 2/3.
In the case of trees D-F in Figure 7.3, there are three singleton substitu-
tions for the same topology, and the number of substitutions for the
branch leading to taxon 3 is 1, whereas the number for the branch lead-
ing to taxa 4 and 5 is 2/3. In addition, one interior branch has the aver-
age number of 2/3 substitutions. Therefore, if we know all the pathways,
we can compute the average number of substitutions for each branch.

This is also true for parsimony-informative sites. Let us consider this
problem using the tree given in Figure 7.1. We have seen that the nu-
cleotides observed in the six extant taxa generate four equally parsimo-
nious pathways in the unrooted topology of this tree. They are (a - T, b -
T, c - T, d - T), (a - T, b - T, c - A, d - A), (a - C, b - T, c - A, d - A), and (a -
A, b - T, c - A, d - A). The first pathway requires one substitution for each
of the branches 1-a, 5-c, and 6-d, and the second requires one substitu-
tion for each of the branches 1-a, b-c, and a-d. Similarly, the third and
fourth pathways require one substitution for branches 2-a, b-c, a-d, and
1-a, 2-a, b-c, respectively. We can therefore compute the average num-
bers of substitutions for all branches. We obtain the numbers 3/4, 2/4, 0,
0, 1/4, 1/4, 2/4, 3/4, and 0 for branches 1-a, 2-a, 3-b, 4-b, 5-c, 6-d, a-d,
b-c, and c-d, respectively. The length of a branch can then be obtained by
adding all substitutions for that branch at both singleton and informative
sites. We call this way of estimating branch lengths the average pathway
method.

Maddison and Maddison (1992) and Swofford and Begle (1993) also
estimate the branch lengths by using two algorithms: Acctran and
Deltran. In Acctran, evolutionary changes of nucleotides are assumed to
occur as soon as possible from the root, whereas in Deltran the changes
are assumed to occur as late as possible from the root (Swofford and
Maddison 1987). As an example, let us consider tree B of Figure 7.1 and
assume that the nucleotide (A) for sequence 6 represents the ancestral
nucleotide at node e. In the Acctran algorithm, A is assumed to change
to T at the earliest node d, and then the minimum number of nucleotide
changes is considered. Therefore, nodes a, b, and c are also assumed to
be T. In the Deltran algorithm, however, nucleotide changes are delayed
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as much as possible. Therefore, the nucleotides at nodes a, b, c, and d are
assumed to be A, T, A, and A, respectively. (Node e is not considered.)
This indicates that the nucleotide assignments for the ancestral nodes are
considerably different between Acctran and Deltran, and therefore the
estimates of branch lengths will also be different. When closely related
sequences are examined, however, the difference in branch length esti-
mates between the two methods is not as large as one might suspect.

In general, the estimates of branch lengths obtained by parsimony
methods tend to be smaller than the actual values, particularly when se-
quence divergence is high. One way to avoid this underestimation of
branch lengths is to use the least squares or the ML method after the
topology of the tree is determined by MP methods. Under certain condi-
tions, MP methods seem to be superior to distance or ML methods for
finding the correct topology (see chapter 9). Therefore, this approach may
give a more reliable topology and more reliable estimates of branch
lengths.

7.5. Weighted Parsimony

As mentioned earlier, MP methods are expected to produce more reliable
trees when the number of backward and parallel substitutions (extent of
homoplasy) is small than when it is large. Therefore, if a set of sequences
used for phylogenetic analysis includes fast-evolving and slow-evolving
sites, one would expect that the latter sites are more useful than the for-
mer sites for constructing MP trees when distantly related sequences are
studied. Therefore, if we give more weight to slow-evolving sites than to
fast-evolving sites, a more reliable tree may be obtained than when they
are equally weighted (Farris 1969; Swofford et al. 1996).

For example, the nucleotides at the first, second, and third codon po-
sitions of protein-coding genes are known to evolve at different rates,
those at the third positions evolving fastest and those at the second po-
sitions slowest (see Table 3.4). Therefore, one may give such weights
as w^ = 3, w2 = 5, and w3 = 1 for the first, second, and third positions,
respectively. These weights would of course vary from gene to gene.
Generally speaking, functionally less important parts of a gene are
known to evolve faster than more important parts (Dickerson 1971;
Kimura 1983). Therefore, one may give the former a lower weight than
the latter when distantly related sequences are studied.

Weighted parsimony also allows different weights to be given to differ-
ent types of substitutions at a given site. For example, transitional nu-
cleotide substitutions generally occur more frequently than transver-
sional substitutions, as mentioned earlier. In this case, it is convenient to
use a substitution weight matrix as given in Figure 7.10A. A weight ma-
trix is sometimes called a step matrix (Swofford and Begle 1993). If tran-
sitions occur twice as frequently as transversions, we may give w = 2.
The matrix in Figure 7.1 OB gives a weight of 0 to all transitional changes
and 1 to all transversional changes. Therefore, transitional changes are
completely ignored, and only transversional changes are considered.
This type of MP method is called transversion parsimony.
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134 CHAPTER 7

FIGURE 7.10. (A) Weight matrix for transitional and transversional substitutions.
(B) Weight matrix for transversion parsimony.

Figure 7.4D shows a weighted parsimony tree obtained from the DNA
sequence data for the five hominoid species considered earlier (Figure
6.1). Kimura's formula for estimating the transition/transversion ratio
(Equation [3.18]) gave R = 6 for this set of data. This suggests that the
transition rate is about six times higher than the transversion rate. We
therefore used w = 6 in constructing the weighted parsimony tree.
Interestingly, the topology of this tree is the same as that of the trees ob-
tained by distance methods (Figure 6.2).

However, there are some problems with weighted parsimony. First, we
usually do not know the appropriate weights to be used in actual data
analysis. In some cases, information from previous studies can be used,
but there is no guarantee that they are appropriate for the data set under
consideration. For this reason, a number of authors (Farris 1969; Sankoff
and Cedergren 1983; Williams and Fitch 1990) proposed a method called
dynamically weighted parsimony. In this method, a set of weight para-
meters that appear to be appropriate a priori are first used to construct an
MP tree, and this tree is now used to obtain an improved set of weight
parameters. These new parameters are then used to construct a new MP
tree. This process is repeated until a stable tree (or trees) is obtained. This
is a time-consuming method and does not guarantee convergence to a
stable tree. Nevertheless, computer simulation has shown that this
method improves the probability of obtaining the correct tree under cer-
tain conditions (Fitch and Ye 1991). Second, slowly evolving sites or
slowly changing substitution types are informative only when distantly
related sequences are studied. When closely related sequences are used,
the fast-evolving sites or types of substitutions are obviously more infor-
mative. However, actual data often include both distantly related and
closely related sequences, and in this case, it is not clear how useful
weighted parsimony is. This problem needs more investigation.

Example 7.2. Unweighted and Weighted Trees for Simulated Sequence Data

One of the virtues of MP methods is that when there are no backward or
parallel substitutions and there are a sufficiently large number of infor-
mative sites, they are able to reconstruct the true tree irrespective of the
pattern of nucleotide substitution. This suggests that they will produce
a highly reliable tree when the extent of sequence divergence is low. To
see whether this is the case or not, we constructed MP trees using the
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PHYLOGENETIC INFERENCE: MAXIMUM PARSIMONY METHODS 135

FIGURE 7.11. (A) Standard parsimony tree for simulated sequence data as inferred
by the stepwise-addition with "closest" option in PAUP* (no branch swapping).
Bootstrap values are shown in boldface (100 replications). (B) Weighted parsimony
for the same data set (w = 5 was used). The branching pattern of sequence 9 is
incorrect (see Figure 6.8A).

24 DNA sequences discussed in chapter 6 (Figure 6.8). We first used
the stepwise addition algorithm with the "closest" option in PAUP* to
construct the MP tree and the average pathway method to estimate the
branch lengths. The tree obtained is presented in Figure 7.11A.
Comparison of this tree with that in Figure 6.8B indicates that the MP
tree is virtually the same as the true (realized) tree. The only topological
difference observed is the interchange of sequence 21 with the cluster of
sequences 22 and 23. The branch lengths are also very close to those of
the true tree, though there is some tendency for the interior branches
of the MP tree to be underestimated because of homoplasy. When we
tried a heuristic search with 50 replications of TBR branch swapping, we
found two more MP trees, which were different with respect to the split-
ting pattern of sequences 21, 22, and 23.

These results indicate that when sequence divergence is low, MP trees
are very close to the true tree. They are also similar to the NJ tree in Figure
6.8C. It is interesting to note that NJ resolved the branching pattern of se-
quences 21, 22, and 23 correctly but did not produce a trifurcating node
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136 CHAPTER 7

for sequences 8, 9, and 10. By contrast, MP had no trouble identifying the
trifurcating node but did not produce the correct branching pattern for
sequences 21, 22, and 23.

We also constructed a weighted MP tree with a transition/transversion
ratio (w) of 5. (Note that the DNA sequences used were generated with a
transition/transversion ratio [R] of 5.) The tree is presented in Figure
7.11B. The topology of this tree is identical with that of the realized tree
B in Figure 6.8 except for one topological error that occurred with respect
to the branching pattern of sequence 9. The branch lengths of this tree do
not have any biological meaning.

Example 7.3. Origin of Whales

Whales are the largest animals that have ever lived on Earth. They belong
to the mammalian order Cetacea that includes whales, dolphins, and por-
poises, which are all adapted to aquatic life. The evolutionary origin of
cetaceans has been a mystery over a century. In recent years, however,
their evolutionary relationships with other mammalian orders are being
clarified thanks to molecular data. Although whales were once believed
to be related to horses, elephants, or some other mammalian order, it is
now generally agreed that they are most closely related with artiodactyls.
The order Artiodactyla was traditionally divided into three suborders,
Ruminantia (e.g., deer, giraffes, cows, sheep, chevrotains), Tylopoda (e.g.,
camels), and Suiformes (e.g., pigs, peccaries, and hippopotamuses), and
each of these suborders had been considered to be monophyletic. Recent
molecular data, however, suggest that the order Cetacea is most closely
related to Ruminantia, and therefore Cetacea is included inside the or-
der Artiodactyla (Graur and Higgins 1994; Gatesy 1997; Shimamura et al.
1997).

Here we construct a phylogenetic tree using DNA sequences of the
blood-clotting protein •y-fibrinogen gene. This gene consists of 10 exons
and spans an 8 kb region of nuclear DNA. Gatesy (1997) sequenced a
523-581 bp fragment of the gene for six species of artiodactyls, three
species of cetaceans, two species (horse and Asiatic tapir) of Peri-
ssodactyla (odd-toes ungulates), and two species (spotted hyena and coy-
ote) of Carnivora. Adding the human sequence available, Gatesy con-
structed an MP tree using PAUP* with 50 random taxon replicates and
TBR branch swapping. Here we used the branch-and-bound method to
construct the MP tree. The number of nucleotides used was 433 after
elimination of all alignment gaps. The branch-and-bound method pro-
duced three equally parsimonious trees, one of which is presented in
Figure 7.12A. The other two trees had different branching patterns for
sheep, giraffe, and moose, that is, ([sheep, giraffe] moose) and ([sheep,
moose] giraffe) instead of ([moose, giraffe] sheep). All three trees had a
tree length of 485 substitutions. When a 30% bootstrap majority-rule
consensus tree was constructed from 500 replications, we obtained the
same tree as that of Figure 7.12 A. However, the bootstrap value of the gi-
raffe-moose cluster is so low that the branching pattern for sheep, giraffe,
and moose remains unresolved. We also constructed the NJ and ME trees
using Kimura distance for this data set. The NJ tree was identical with
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PHYLOGENETIC INFERENCE: MAXIMUM PARSIMONY METHODS 137

the ME tree and is given in Figure 7.12B. This tree has the same topol-
ogy as that of tree A except for the branching pattern of sheep, giraffes,
and moose, which again has low bootstrap values. Therefore, both MP
and NJ trees give essentially the same conclusion as to the phylogenetic
relationships of the organisms studied.

Both trees A and B show a branching pattern that is unexpected from
the classical taxonomy. That is, cetaceans are close relatives of rumi-
nants, and the other two suborders of Artiodactyla, i.e., Tylopoda and
Suiformes, are outgroups of ruminants and cetaceans. This indicates that
the order Artiodactyla is not monophyletic but paraphyletic (Wiley et al.
1991), because it does not include Cetacea, which is a close relative of
the suborder Ruminantia. Since this classification is unnatural, Mont-
gelard et al. (1997) proposed a new mammalian order named Cetartio-
dactyla that includes both Artiodactyla and Cetacea. This conclusion has
been supported by Gatesy et al.'s (1999) further study using a larger set
of DNA sequences. It is also supported by the work of Nikaido et al.
(1999), who used an entirely different approach (see section 7.7).

7.6. MP Methods for Protein Data

Eck and Dayhoff (1966) used an MP method for protein sequence data.
They considered 20 different amino acids as character states and con-
structed an MP tree, assuming that the evolutionary change can occur in
all directions among the 20 amino acids. Dayhoff and her collaborators
(Dayhoff 1972) used this method extensively and obtained quite reason-

FIGURE 7.12. (A) MP bootstrap consensus tree obtained by the fast-heuristic search
of PAUP*. (B) NJ tree. Bootstrap values are shown in boldface (1000 replications),
and the PC values (for NJ tree) are shown in italics. The PC values obtained by
Dopazo's method are shown in parentheses.
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138 CHAPTER?

able trees for various protein sequences. A computer program incorpo-
rating this method is available in PAUP* and MEGA2.

Theoretically, this approach is approximate, because some amino acid
changes require two or three nucleotide substitutions, whereas other
changes can be explained by one substitution. Furthermore, some amino
acids are biochemically similar to one another, and substitution occurs
more often within each group of similar amino acids than between
groups. For this reason, a number of authors (Moore et al. 1973; Fitch and
Farris 1974; Sankoff and Rousseau 1975; Felsenstein 1988) have devel-
oped various protein parsimony algorithms, taking into account the min-
imum number of nucleotide substitutions between any pair of amino
acids and using the sum of these numbers to compute the tree length.
Felsenstein's program PROTPARS in PHYLIP uses one of these algo-
rithms (Felsenstein 1995). However, these algorithms are quite elaborate
and depend on a number of simplifying assumptions. Therefore, it is not
clear whether they are superior to Eck and Dayhoff's original version.
Russo et al.'s (1996) empirical study suggests that Eck and Dayhoff's
method is quite efficient in obtaining the true tree.

When DNA sequence data became available in the 1980s, many inves-
tigators started to use them for phylogenetic inference. However, it grad-
ually became clear that the evolutionary pattern of DNA sequences is so
complex that they are not necessarily better than protein sequences. One
problem with DNA sequences is that the substitution pattern is not the
same for all nucleotide positions within codons and the GC content in
third nucleotide positions often varies with species. For example, the
rate of nucleotide substitution at the third codon positions in hominoid
mitochondrial genes is so high that the proportion of different nu-
cleotides reaches the saturation level rather quickly (Ruvolo et al. 1994).
For these reasons, protein sequences are now again used for phylogenetic
reconstruction, and Eck and Dayhoff's simple MP method often gives bet-
ter results than DNA MP methods.

Example 7.4. MP and NJ Trees from the Cytochrome b Gene

The mitochondrial DNA (mtDNA) in vertebrates contains 13 protein cod-
ing genes, and the entire sequence of mtDNA is available for a substan-
tial number of organisms. Russo et al. (1996) chose 11 organisms of which
the evolutionary relationships are known from paleontological and mor-
phological data and for which complete mtDNA sequences are available
and then examined the ability of each gene to reconstruct the correct phy-
logeny. Here we consider only the cytochrome b gene, which is often
used for phylogenetic inference. We first constructed the MP tree using
amino acid sequence data for cytochrome b, which is composed of 377
amino acids. When the 11 species given in Figure 7.13A were used, there
were 121 informative sites and 44 uninformative variable sites. The
branch-and-bound search produced a single MP tree, which is presented
in Figure 7.13 A. The topology of this tree is identical with the biological
tree we already know. An interesting observation about this tree is that
the opossum, chicken, Xenopus, and fish sequences show considerably
shorter branch lengths compared with what one would expect under the
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PHYLOGENETIC INFERENCE: MAXIMUM PARSIMONY METHODS 139

FIGURE 7.13. Inference of a "known" phylogeny of 11 vertebrates using the
nucleotide and amino acid sequences of the mitochondrial cytochrome b gene.
77.: Tree length. PC: Poisson correction distance. Kimura: Kimura distance.

molecular clock. Figure 7.13B shows the NJ (and ME) tree obtained by
using the Poisson-correction distance. This tree also shows the correct
topology, but the branch lengths for the opossum, chicken, and Xenopus
are much longer than those of the MP tree.

Figure 7.13C shows the branch-and-bound MP tree for the nucleotide
sequence data (1,131 bp long). In this case, there were 494 informative
sites and 111 uninformative variable sites. Yet, the topology of the tree is
wrong with two branch switches. That is, the opossum should be be-
tween chicken and the rodents, and the loach should be closer to the carp
rather than to the trout. This indicates that a large number of informative
sites alone does not necessarily produce a better tree. The wrong topol-
ogy of the DNA tree appears to be caused by the fact that nucleotide dif-
ferences at third codon positions have reached the saturation level, and
they introduced noise in phylogenetic construction. However, even
when we used only first and second codon position data, the topology
was still incorrect with respect to the branching pattern of the three fish
species. We also constructed the NJ and ME trees using the Kimura dis-
tance for all three codon position data. These trees were identical with
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140 CHAPTER 7

each other but showed one topological error with respect to the three fish
species (Figure 7.13D). These results suggest that protein sequences are
better than DNA sequences at least in this case. Russo et al. (1996) ex-
amined all the 13 protein-coding genes and found that the above con-
clusion is generally true.

7.7. Shared Derived Characters

Irreversible Shared Derived Characters

If a group of species share a unique and irreversible mutation (mutant
character), they must be derived from the same common ancestral
species in which this mutation occurred. We call this type of mutations
irreversible shared derived characters. These characters are very useful
for phylogenetic construction (Hennig 1950,1966). For example, Figure
7.14 shows a phylogenetic tree for four species (1,2,3, and 4), in which
one mutation (a -» a', b -> b', or c -> c'} has occurred in each of the three
interior branches. Because these mutations are assumed to be unique and
irreversible and each mutation defines a clade (a monophyletic group of
species), they define the tree unambiguously. Furthermore, since the mu-
tations are directional and the ancestral characters (a, b, and c) are
known, we can infer a rooted tree without outgroup species. When the
number of species is small, the phylogenetic tree can be easily deter-
mined from the distribution of character states among the species.
However, when the number of species and the number of characters used
are large, the topology and the assignment of mutations for each branch
can be cumbersome. In this case, we can use the computer program in-
corporated in PAUP*.

In cladistic parsimony, where the clarification of the evolutionary
changes of characters in the phylogeny is emphasized, only shared de-
rived characters or synapomorphies are considered to be useful for con-

FIGURE 7.14. Phylogenetic tree for five species (1, 2, 3, 4, and 5), which is deter-
mined by irreversible mutations (a -> a't b -*• b't and c -> c'}. a, b, and c are the
ancestral characters, and a', b', and c' are the derived characters. In this case,
the root of the tree can also be determined.
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PHYLOGENETIC INFERENCE: MAXIMUM PARSIMONY METHODS 141

structing phylogenetic trees (Henning 1966; Eldredge and Cracraft 1980;
Sober 1988; Wiley et al. 1991). However, since the evolutionary changes
of morphological characters and the nucleotide substitutions in DNA se-
quences are usually reversible, most parsimony analyses allow the re-
versibility of character states. Exceptions are Henning's (1950) strict
cladistic analysis and Gamin and Sokal's (1965) parsimony. The latter
method is different from the Hennigian parsimony in that the same mu-
tation may occur independently in different evolutionary lineages. In the
past, however, these methods have rarely been used in actual data analy-
sis because of the apparently unrealistic assumption of irreversibility
(Wiley et al. 1991; Swofford et al. 1996).

SINEs and LINEs

However, recent molecular studies have shown that the genomes of
higher organisms contain many unique shared derived characters that
are apparently irreversible. Among the most well studied are short in-
terspersed repetitive elements (SINEs) and long interspersed repetitive
elements (LINEs) (Singer 1982; Jurka et al. 1988; Britten et al. 1988).
SINEs are short sequences of 80-400 nucleotides, whereas LINEs are
usually repeats of a few hundred to a few thousand nucleotides. Both
SINEs and LINEs are retropseudogenes but are capable of self-replica-
tion. Replicated repeat elements are inserted at different locations of the
genome, and once they are inserted, they are almost never excised un-
less they are eliminated by a rare event of large-scale DNA deletion
(Hamdi et al.1999; Nikaido et al. 1999). These repeat elements are sub-
ject to mutation and minor insertions/deletions and lose their identity in
the long run. However, if one is interested in constructing a phylogenetic
tree for relatively closely related species (divergence times of up to about
50 million years), these repeat elements can be used as shared derived
characters (e.g., Ryan and Dugaiczyk 1989; Okada 1991; Murata et al.
1993; Furano et al. 1994; Verneau et al. 1997).

SINEs and LINEs are identified by appropriate primer DNA sequences,
but if they accumulate a substantial number of mutations, the primers
may not be able to detect the repeat elements. If this happens for some
of the species examined, they are treated as missing characters (Nikaido
et al. 1999). When the elements are eliminated by rare deletion events,
they are also treated as missing characters. However, since SINEs and
LINEs are irreversible mutations, they are still very useful for phyloge-
netic analysis.

The most well-known family of SINEs is the Alu family, which has
about 300,000 members in the human and the ape genomes. The mem-
bers of this family are pseudogenes originally derived from 7SL RNA, one
component of the signal recognition particle (Ullu and Tschudi 1984).
The SINE families in other organisms are usually pseudogenes derived
from various types of t-RNAs rather than 7SL RNA (Kido et al. 1991;
Okada et al. 1997). Therefore, there are many different SINE families
even in a single species. For example, the salmonid fish have at least
three SINE families, and they are confined in this group offish (Takasaki
et al. 1994).
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142 CHAPTER 7

FIGURE 7.15. Evolutionary relationships among cetaceans and artiodactyls as in-
ferred by the presence or absence of 21 different SINE elements. Arrows mark the
insertions of SINEs (see Nikaido et al. 1999 for details).

Shimamura et al. (1997) and Nikaido et al. (1999) used mammalian
SINE families to study the evolutionary relationships of whales, rumi-
nants, pigs, and camels. The results obtained are presented in Figure
7.15. In this figure, the locations of branches, in which 21 different SINEs
were inserted, are presented. As in the case of Figure 7.12, the pattern of
insertions of SINEs indicates that whales are a sister group of ruminants
and hippopotamuses and are a clade (monophyletic group) within the or-
der Artiodactyla. These results strengthen the conclusion obtained by us-
ing the 'y-fibrinogen gene (Figure 7.12). They are particularly significant
because the SINEs used here are unique and largely irreversible genetic
markers, and the tree based on them is unaffected by the error caused by
short-branch (or long-branch) attraction (chapter 9). The Hennigian par-
simony analysis of the SINE data has shown that this is the most parsi-
monious tree and that the consistency index (CI) is 1 and the homoplasy
index (HI) is 0 (Nidaido et al. 1999). Therefore, the topology given in
Figure 7.15 is likely to be correct. SINEs have also been used successfully
in clarifying the evolutionary relationships of salmonid species (Murata
et al. 1993; Takasaki et al. 1994) and some groups of primate species
(Hamdi et al. 1999).

Some might wonder whether the phylogenetic trees based on SINEs are
affected by the polymorphism of the presence and absence of SINE in-
sertions in ancestral species (lineage sorting). Theoretically, this poly-
morphism may generate incongruent phylogenies among different SINE
insertions, as in the case of polymorphic DNA sequences in Figure 5.3.
This can be seen from the diagrams given in Figure 7.16. In this figure
" + " stands for the allele or the genome having a SINE element at a given
locus and "-" for the allele lacking it, and the arrow sign indicates the
time at which the element was inserted. Here we consider only the cases
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PHYLOGENETIC INFERENCE: MAXIMUM PARSIMONY METHODS 143

FIGURE 7.16. Four different evolutionary relationships of three species (X, Y, and
Z) that may be inferred from SINE element polymorphism (+ and -) exists in an-
cestral species. The probability of occurrence of each relationship is given under-
neath the diagram of the relationship. The arrow sign indicates the time of occur-
rence of SINE insertion. The "-" and "+" are the ancestral and derived character
states, respectively. The species tree is the same as that of Figure 5.3.

where two of the three species considered have the SINE element. In di-
agram (A), the insertion occurred between the times of occurrence of two
speciation events (t0 and tj, and species X and Y form a clade, which is
congruent with the species tree. If we assume that SINE insertion occurs
with the same probability for all generations, it can be shown, by using
the same mathematical method (coalescence theory) as used by Nei
(1987, pp. 401-402), that the probability of occurrence of this event is 1
— exp (-T/2AO, where T = t^ - tQ and Nis the effective population size.
This probability is the same as that of having evolutionary relationship
(A) for DNA sequences in Figure 5.3.

Diagrams (B)-(D) in Figure 7.16 show the cases where the SINE inser-
tion occurred before the first speciation event (time t0). In this case, the
ancestral species can be polymorphic with respect to alleles " + " and
"-", and this polymorphism may generate evolutionary relationships
that are incongruent with the species tree. Relationship (B) is congruent
with the species tree, but relationships (C) and (D) are incongruent. The
probability of occurrence of each of these events is given underneath the
diagram. Note that if SINE insertion occurs after the second speciation
event (time ta), the SINE element is not informative because it generates
a singleton mutation.

Therefore, the effect of ancestral polymorphism of SINE elements is the
same as that for DNA sequences discussed in chapter 5, and we have al-
ready shown that the probability of occurrence of incongruent relation-
ships is generally very small if T is one million years or greater. (Tachida
and lizuka [1993] studied this problem under different assumptions, but
their formulation appears to give an underestimation of the probability
of occurrence of incongruent relationships.) Since Tis likely to be greater
than one million years when different families and genera in mammals
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144 CHAPTER 7

are studied, we can probably dismiss the effect of polymorphism in an-
cestral species in the case of the phylogenetic tree in Figure 7.15. In fact,
all SINE insertions examined in Figure 7.15 are consistent with the topol-
ogy presented, and there is no indication of incongruent phylogenies for
different SINE insertions.

If SINE insertions are irreversible and the effect of ancestral polymor-
phism is negligible, the tree in Figure 7.15 can be regarded as established
without further statistical tests. Application of a bootstrap test (Hillis
1999) to this tree is inappropriate, because every SINE defines a particu-
lar clade and exclusion of some SINE insertions (e.g., ino) in bootstrap
pseudoresamples will make the tree look superficially unreliable. Note
that theoretically a single SINE insertion for each interior branch is suf-
ficient to support the topology obtained (Sober 1988).

Of course, this does not mean that no statistical test is needed for ac-
tual SINE data analysis. Although homoplasy appears virtually absent in
the data of Figure 7.15, it is still too early to exclude homoplasy alto-
gether, because the same SINE insertion may occur independently in dif-
ferent lineages though the probability appears to be very small. In some
data sets, the effect of ancestral polymorphism may also generate incon-
gruent phylogenies for different SINEs. In this case, we need some type
of statistical test based on the special property of evolution of SINEs. At
the present time, we are not sure how to test the reliability of SINE-based
trees efficiently, but it is unlikely that the reliability of the tree in Figure
7.15 is questionably low. As a general strategy, it is important to have two
or more SINE insertions for each interior branch.

LINEs are longer than SINEs and vary in size rather extensively from
copy to copy. Therefore, it is harder to work with LINEs than with SINEs.
However, LINEs can be used not only as shared derived characters but
also for estimating the time of divergence between species, because
LINEs diverge as mutations accumulate and are long enough to give re-
liable estimates of sequence divergence. Verneau et al. (1997,1998) used
the rodent LINE LI family (45 rat LI subfamilies) to clarify the evolu-
tionary relationships and the times of speciation events among 26 rat
species of the rodent subfamily Murinae. They showed that these spe-
cies arose 5-6 million years ago and subsequently underwent different
episodes of speciation, the first one occurring about 2.7 million years ago
and the second one about 1.2 million years ago.

Other Shared Derived Characters

In addition to SINEs and LINEs, there are a variety of genetic markers that
can be used for distinguishing between different groups of organisms.
For example, the CMTIA-REP repeat in humans consists of two highly
homologous 24 kb sequences (the proximal and the distal CMTIA-REP
elements), and some forms of mutation of this repeat result in genetic dis-
eases. Interestingly, this repeat exists only in humans and chimpanzees.
However, the distal element of the repeat appears to be present in all pri-
mate species but is absent in other mammalian orders (Keller et al. 1999).
Apparently, the distal element evolved in the common ancestor of pri-
mates, and the proximal element evolved as a result of duplication of the
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distal element in the common ancestor of humans and chimpanzees. It
is clear that if we find a large number of these shared derived characters
they will be very useful for phylogenetic analysis.

Another important class of genetic markers is large-scale insertions or
deletions of DNA sequences. For example, the human genome contains
a duplication of a large DNA region encompassing about 25 immu-
noglobulin kappa variable region genes compared with other ape ge-
nomes (Zachau 1995). If this DNA duplication had occurred in the an-
cestor of African apes, it would have been a very useful phylogenetic
marker. The class I MHC (HLA) C locus, which is known to be highly
polymorphic in humans and chimpanzees, is present only in humans
and African apes, so that this locus was apparently generated by gene du-
plication in the ancestor of these species (Chen et al. 1992). The DY/DI
gene clusters in the cattle and pig class II MHC are also apparently con-
fined only to a group of artiodactyl species (Trowsdale 1995). As the ge-
nomic structures of many different organisms are studied, we will find
many such cladistic characters, and they will be important sources of
phylogenetic analysis in the future.

In the study of evolutionary relationships of distantly related organ-
isms, the presence and absence of introns in protein-coding genes will
be useful. Although the debate over the intron-early and the intron-late
hypotheses is still going on, it is now clear that at least in higher organ-
isms introns are occasionally inserted or deleted, and therefore the pres-
ence or absence of introns can be used as cladistic characters. For exam-
ple, the intron in the protamine PI gene exists apparently in all mammals
but not in other vertebrate species (Rooney et al. 2000). Venkatesh et al.
(1999) used information on the presence or absence of introns in seven
protein-coding genes for constructing a phylogenetic tree of fish species
under the assumption that the probability of independent intron inser-
tion in different lineages is negligibly small. They clarified the difficult-
to-ascertain phylogenetic relationships of some ray-finned fishes.

Insertion of an intron is a rare event, and the same intron is almost
never inserted twice in the same genomic location. However, the loss of
an intron may occur independently in different evolutionary lineages.
This property satisfies the conditions required for Farris's (1977) Dollo
parsimony analysis. In this method, a new mutation (shared derived
character) is assumed to be unique, but the loss of the mutation may oc-
cur independently in the descendant lineages. Therefore, intron inser-
tion/deletion data can be analyzed by the Dollo parsimony, which is in-
corporated in PAUP*. However, note that the bootstrap test should not
be applied to this type of data, because each intron insertion is a unique
and unambiguous event.
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