(Im)possible emergent symmetry and conformal bootstrap

Yu Nakayama earlier results are based on collaboration with Tomoki Ohtsuki **Phys.Rev.Lett. 117 (2016)**

Symmetries in nature

The great lesson from string theory

All the global continuous symmetries in nature are emergent

- Under which condition, discrete symmetry ->
 continuous symmetry?
- How to realize continuous symmetry in lattice/condensed matter physics?
- If we find such "emergent symmetry", what can we learn about the microscopic systems?

Two examples we discuss today

- Neel-VBS phase transition in frustrated spin system "king of emergent symmetry"
 - Emergent Poincare symmetry
 - Emergent gauge symmetry
 - Emergent conformal symmetry
 - Emergent continuous global symmetry from discrete lattice symmetry
 - Emergent SO(5) from SO(2)xSO(3) global symmetry(?)
- QCD chiral phase transition
 - Emergent(?) discrete symmetry at the chiral symmetry restoration
 - Further emergent continuum symmetry? Restoration of anomalous symmetry

Neel-VBS phase transition

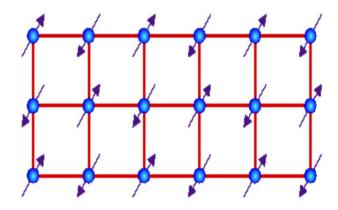
Read-Sachdev, Senthil-Vishwanath-Balents-Sachdev-Fisher etc

Neel-VBS phase transition

- Consider the frustrated quantum spin systems in 2+1 dim at zero temperature
- There exists a critical coupling such that
 - Emergent Poincare symmetry
 - Emergent gauge symmetry
 - Emergent conformal symmetry
 - Emergent continuum global symmetry from discrete lattice symmetry
 - Emergent SO(5) from SO(2)xSO(3) global symmetry(?)

Ground states in extreme limit 1

• $J_1 \gg J_2$ anti-ferro or Neel state (SU(2) \rightarrow U(1) symmetry breaking)



• Neel State is frustrated by J_2

Ground states in extreme limit 2

• $J_2 \gg J_1$ frustration cause Valence-Bond-State (VBS) ordering (Z4 is broken)

$$|\text{pair}\rangle = \frac{|+\rangle|-\rangle - |-\rangle|+\rangle}{\sqrt{2}}$$

 Lattice Z4 is enhanced to U(1) monopole symmetry in the continuum limit

Emergent Poincare symmetry

- Enough lattice symmetry to (heuristically) argue that near criticality dispersion is relativistic
- Finite scaling analysis of linear dispersion was numerically verified
- Rough idea: Poincare CFT is stable under Lorenz violating deformations except for spin 1 operator and anti-symmetric tensor operator
- Discrete symmetry like T and P combined with lattice symmetry forbids such deformations
- Different "speed of light" is renormalized to be the same because they are spin 2 and irrelevant.

EFT and emergent gauge symmetry

Neel order parameter is decomposed into spin

$$\vec{S} = \bar{\Phi}^I \vec{\sigma}_{IJ} \Phi^J$$

- Gauge redundant U(1) → gauged linear sigma model
- "Emergent" U(1) gauge symmetry

$$S_{eff} = \int d^2x dt \left(F_{\mu\nu}^2 + (D_{\mu}\Phi_I)^2 + m^2 |\Phi_I|^2 + \lambda |\Phi_I|^4 \right)$$

- Deconfinement/confinement criticality
 - " $m^2 > 0$ " \rightarrow confinement (= monopole condensation) \rightarrow breaking of U(1) (or original Z4)
 - " $m^2 < 0$ " \rightarrow deconfinement (=Higgs) \rightarrow breaking of SU(2)
- Unlike d=3+1 gauge theory, phases can be separated

VBS or monopole symmetry

• Monopole current: $J^{\mu} = \epsilon^{\mu\nu\rho} F_{\nu\rho}$

Monopole operator with charge q

$$J^{\mu} = \partial^{\mu} a \; , \; M_q \sim e^{iqa}$$

- Will identify monopole symmetry as VBS order
- To get the criticality under Z4, we have to ensure charge 4 monopole operators are irrelevant
- Possibility of Neel-VBS second order phase transition on the other lattice
 - Triangular lattice > Z3 monopole operator must be irrelevant
 - Rectangular lattice → Z2 monopole operator must be irrelevant
- Large N or large q computation has been a hot issue

Further SO(5) enhancement?

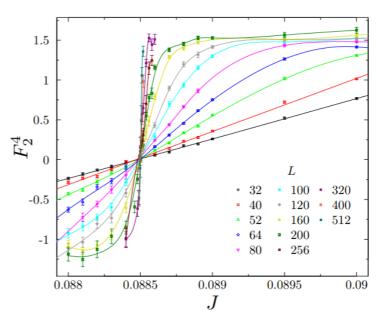
- Nahum et al proposed a further symmetry enhancement of SO(3)xSO(2) → SO(5)
- Order parameter 2+3 = 5 $v_{i=1...5} = (\vec{S}, M_1, \bar{M}_1)$
- Numerical evidence: 2pt function scaling

$$\Delta_S \sim \Delta_{M_1} \sim 0.62$$

Four-point function, Binder index

$$F_2^4 = \langle \vec{S}^4 - (M\bar{M})^2 \rangle$$

- Real thing or accident?
 - e.g. ABJM theory



Bootstrap study of emergent symmetry

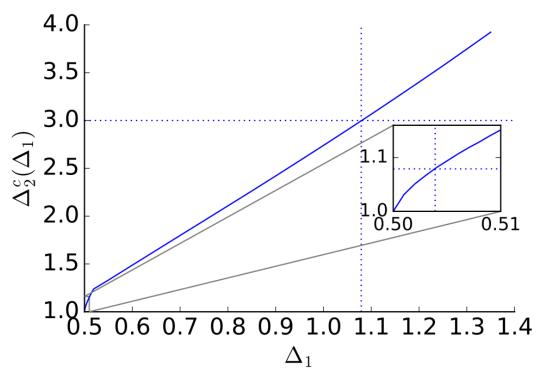
- \bullet Setup: CFT with U(1) global symmetry. Let the lowest dimensional charge 1 operator O_1 with dimension Δ_1
- Bootstrap under which condition charge 2, 3, 4 operators may become irrelevant.
- Result: Necessary condition for the U(1) global symmetry enhancement (Nakayama-Ohtsuki)
 - From Z2 $\Delta_1 > 1.08$
 - From Z3 $\Delta_1 > 0.58$
 - From Z4 $\Delta_1 > 0.504$
- We have Neel-VBS in mind, but bound is universal

Bootstrap study of emergent symmetry

- Setup: CFT with U(1) global symmetry. Let the lowest dimensional charge 1 operator O_1 with dimension Δ_1
- Bootstrap equation to be studied:

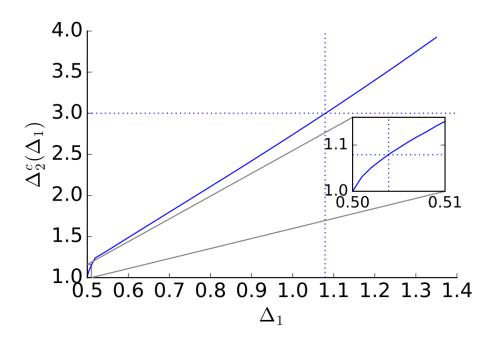
$$\begin{split} & \sum_{O \in O_{i} \times O_{i}^{\dagger}} |\lambda_{i\bar{i}O}|^{2} F_{\Delta_{O},l_{O}}^{(-)i\bar{i},i\bar{i}} = 0, \\ & \langle O_{i}O_{i}^{\dagger}O_{i}O_{i}^{\dagger} \rangle & \sum_{O \in O_{i} \times O_{i}} |\lambda_{iiO}|^{2} F_{\Delta_{O},l_{O}}^{(\pm)ii,i\bar{i}} \pm \sum_{O \in O_{i} \times O_{i}^{\dagger}} |\lambda_{i\bar{i}O}|^{2} (-)^{l} F^{(\pm)ii,i\bar{i}} = 0, \\ & \sum_{O \in O_{1} \times O_{2}} |\lambda_{12O}|^{2} F^{(\mp)12,21} \pm \sum_{O \in O_{2} \times O_{i}^{\dagger}} |\lambda_{1\bar{i}O}^{*} \lambda_{2\bar{2}O}^{*} (-1)^{l_{O}} F^{(\mp)11,22} = 0 \\ & \langle O_{1}O_{1}^{\dagger}O_{2}O_{2}^{\dagger} \rangle & \sum_{O \in O_{1} \times O_{2}} |\lambda_{12O}|^{2} (-1)^{l_{O}} F^{(\mp)21,21} \pm \sum_{O \in O_{1} \times O_{2}^{\dagger}} (-1)^{l_{O}} |\lambda_{12O}|^{2} F^{(\mp)21,21} = 0 \\ & \sum_{O \in O_{1} \times O_{2}^{\dagger}} |\lambda_{1\bar{2}O}|^{2} F^{(\mp)12,21} \pm \sum_{O \in O_{2} \times O_{i}^{\dagger}} |\lambda_{1\bar{1}O}^{*} \lambda_{2\bar{2}O}^{*} F^{(\mp)11,22} = 0 \end{split}$$

Z2 enhancement



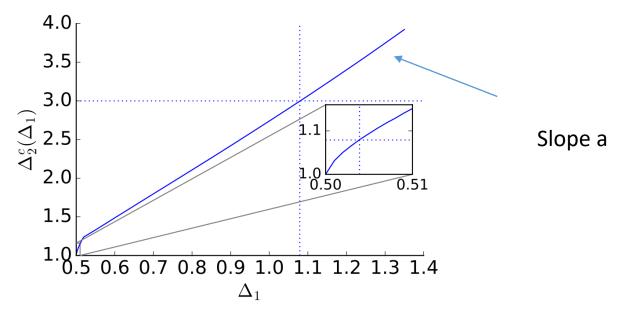
- Essentially the same bound in O(N) bootstrap by Poland et al, but in the larger Δ_1
- Necessary condition for the U(1) global symmetry enhancement $\Delta_1 > 1.08$
 - From Z2

Z4 enhancement



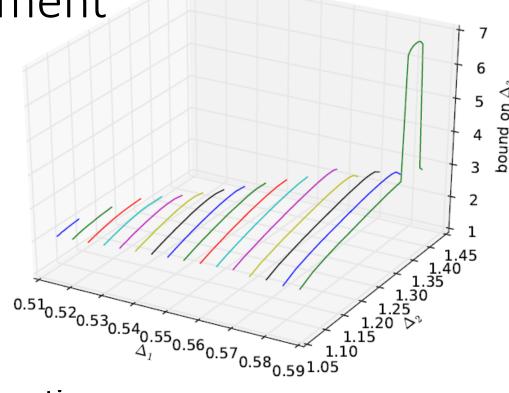
- Necessary condition for the U(1) global symmetry enhancement
 - From Z2 $\Delta_1 > 1.08$
 - \bullet From Z4 $\Delta_1 > 0.504$
- Simple mixed bootstrap does not improve the bound

Interlude or detour



- May expect the asymptotic bound is a straight line (Conjecture: can we prove it?)
- ullet Repeat the analysis to get the bound $\,\Delta_{2^n} \sim q^{\log(a)/\log(2)}$
- In d=2 most likely a=4 (also numerically)
- In d=3 $\Delta_q \sim q^{1.6}$ (can we make it as strong as 1.5 as extremal RN-AdS black hole? e.g. Simeon's talk)
- d dependence?

Z3 enhancement



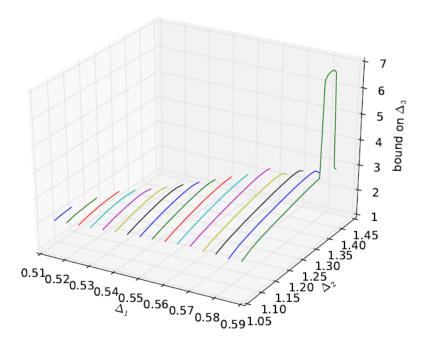
- Under the assumption
 - Only one relevant neutral operator
 - Charge four operator is irrelevant
- Necessary condition for the U(1) global symmetry enhancement
 - From Z3 $\Delta_1 > 0.58$

Comparison with lattice data 1

Necessary condition for the U(1) global symmetry enhancement

- From Z2 $\Delta_1 > 1.08$
- From Z3 $\Delta_1 > 0.58$
- From Z4 $\Delta_1 > 0.504$

reference	Δ_0	Δ_1	Δ_2	Δ_3	Δ_4
JQ [42, 43]	no fixed point				
CDM [25, 44]	1.44(2)	0.579(8)	1.42(7)	2.80(3)	> 3
JQ [45, 46]	1.15(20)	0.64(4)		> 3	> 3
JQ [24]	1.31	0.68		> 3	> 3
JQ [23]		< 3	< 3	> 3	> 3
JQ [26]	1.53(5)	0.60(1)			> 3
large N [47]		0.63	1.50	2.55	3.77

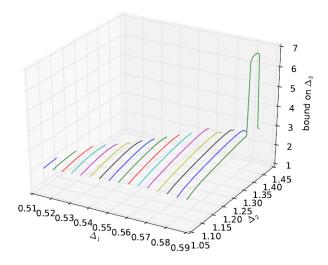


Comparison with lattice data 2

Study on more complex scalars (large N in mind)

Necessary condition for the U(1) global symmetry enhancement

- From Z2 $\Delta_1 > 1.08$
- From Z3 $\Delta_1 > 0.58$
- From Z4 $\Delta_1 > 0.504$



Lattice sim with SU(3) spin

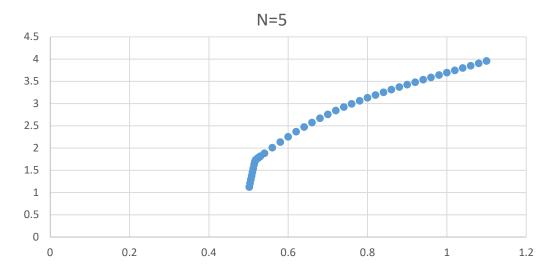
reference	Δ_0	Δ_1	Δ_2	Δ_3	Δ_4
JQ [24]	1.28	0.785	2.0	> 3	> 3
JQ [23]		< 3	< 3	> 3	> 3
JQ [26]	1.46(7)	0.71(2)			> 3
large N [47]		0.755	1.81	3.10	$\boxed{4.59}$

Lattice sim with SU(4) spin

reference	Δ_0	Δ_1	Δ_2	Δ_3	Δ_4
JQ [24]	1.60	0.865		> 3	> 3
JQ [23]		< 3	> 3	> 3	> 3
JQ [26]	1.57(4)	0.85(1)			> 3
large N [47]		0.880	2.12	3.64	5.40

SO(5) enhancement?

- Observed dimensions of putative "5" in Neel-VBS phase transition $\Delta_\Phi \sim \Delta_{M_1} \sim 0.62$
- Since the fixed point is reached under tuning only one parameter, there should exist only one SO(2)xSO(3) singlet operator → singlet operator in 5x5 must be irrelevant
- Bootstrap results



• Only compatible with (weak) first order phase transition

King of emergent symmetry

- Neel-VBS phase transition in frustrated spin system "king of emergent symmetry"
 - Emergent Poincare symmetry
 - Emergent gauge symmetry
 - Emergent conformal symmetry
 - Emergent continuous global symmetry from discrete lattice symmetry
 - Emergent SO(5) from SO(2)xSO(3) global symmetry(?)
- How to incorporate SU(2) and U(1) simultaneously?
- Identify CFT?

Finite temperature chiral phase transition in QCD

Is QCD chiral phase transition 1st or 2nd order?

 Consider idealistic QCD: SU(3) gauge theory with 2 massless Dirac fermions (in fundamental rep)

$$L = -\frac{1}{4g^2} \operatorname{Tr} F_{\mu\nu} F^{\mu\nu} + \bar{\psi}^{La} D^{\mu} \sigma_{\mu} \psi_a^L + \bar{\psi}^{Ra} D^{\mu} \bar{\sigma}_{\mu} \psi_a^R$$

$$\psi_a^L \to (U \psi^L)_a \qquad \psi_a^R \to (V \psi^R)_a \qquad \langle \bar{\psi} \psi \rangle \sim \Lambda^3$$

$$SU(2)_L \times SU(2)_R \times U(1)_A \to SU(2)_V$$

- Will neglect $U(1)_V$ (never broken)
- $U(1)_A$ is anomalous $\partial^\mu J_\mu^A = g^2 {
 m Tr}(F^{\mu\nu} \tilde F_{\mu\nu})$
- Finite temperature chiral phase transition

Landau theory

Order parameter (neglecting anomaly)

$$SU(2)\times SU(2)\times U(1)\sim O(4)\times O(2)$$

$$\phi_a^\alpha\sim \bar\psi\psi \qquad \qquad \text{In Fund x Fund rep of O(4) x O(2)}$$

Effective free energy

$$\mathcal{H} = \partial_{\mu}\phi_{a}^{\alpha}\partial_{\mu}\phi_{a}^{\alpha} + (T - T_{c})\phi_{a}^{\alpha}\phi_{a}^{\alpha}$$

$$+ u(\phi_{a}^{\alpha}\phi_{a}^{\alpha})^{2} + v(\phi_{a}^{\alpha}\phi_{b}^{\alpha}\phi_{a}^{\beta}\phi_{b}^{\beta} - \phi_{a}^{\alpha}\phi_{a}^{\alpha}\phi_{b}^{\beta}\phi_{b}^{\beta})$$

$$+ m_{A}(\phi_{a}^{1}\phi_{a}^{1} - \phi_{a}^{2}\phi_{a}^{2}) + c_{A}(\phi_{a}^{1}\phi_{a}^{1}\phi_{a}^{1}\phi_{a}^{1} + \cdots) \qquad \text{Anomaly}$$

- Non-zero $m_A \rightarrow$ May integrate out half ϕ_a^1
- \rightarrow O(4) vector model in d=3 \rightarrow 2nd order transition (with known exponents e.g. from conformal bootstrap)

Effective/accidental $U(1)_A$ restoration?

Some argue $U(1)_A$ is restored (or emerges) above Tc

- At vacuum $U(1)_A$ is broken down to Z2 via instanton (non-perturbative) effect
- Above Tc, such effects may be negligible (Pisarski-Wilczek, Cohen)
- Aoki et al argued that at least Z4 (or extra Z2) out of $U(1)_A$ is shown to be restored in the meson correlation function

Z4 (extra Z2) recovery in lattice simulation

$$\sum_{x} \langle \bar{\psi}\psi(t,x)\bar{\psi}\psi(0,0)\rangle$$

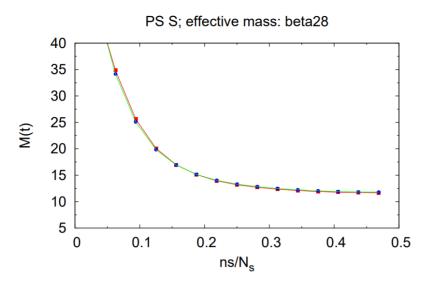
VS

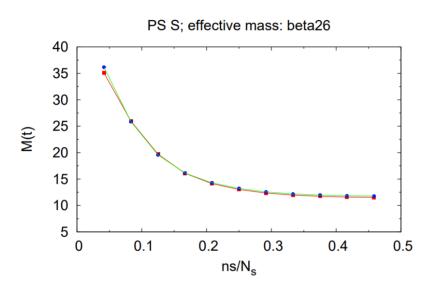
$$\sum_{x} \langle \bar{\psi} \gamma_5 \psi(t, x) \bar{\psi} \gamma_5 \psi(0, 0) \rangle$$

Wilson fermion

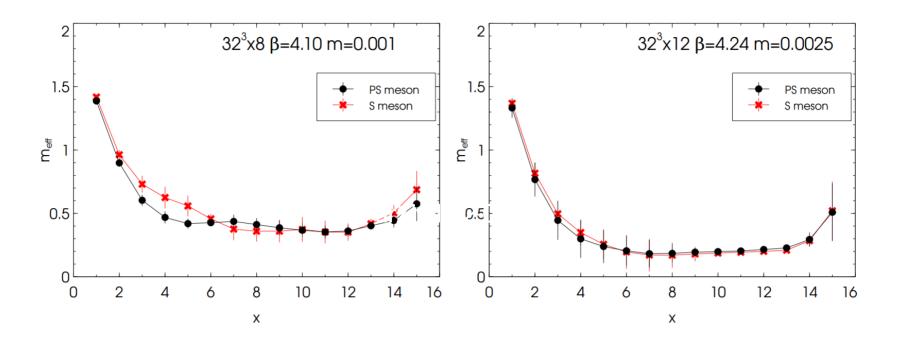
Ishikawa-Iwasaki-Nakayama-Yoshie

arxiv:1706.08872





Z4 (extra Z2) recovery in lattice simulation



Mobius domain wall fermion

Tomiya et al **arXiv:1612.01908**

"Aoki-Fukaya-Taniguchi argument"

- Introduce "supurious mass" m^2
- 1: free energy is analytic wrt m above Tc
- 2: Dirac eigenvalue distribution $D^{\mu}\gamma_{\mu}\psi_{i} = \lambda\psi_{i}$ is analytic at $\lambda = 0$
 - Macroscopic evaluation of free energy

$$f = f_0 + c_0(|m_u|^2 + |m_d|^2) + c_a(m_u m_d + \bar{m}_u \bar{m}_d) + \cdots$$

• Microscopic evalulation shows $c_a = 0$

$$\lim_{m_u \to 0} \frac{\partial f}{\partial m_u} = c_a m_d + \cdots$$

$$= \lim_{m_u \to 0} \int d^4 x \langle \bar{u}(x) u(x) \rangle = \lim_{m_u \to 0} \int d\lambda \frac{m_u \langle \rho(\lambda) \rangle}{m_u^2 + \lambda^2}$$

$$= \langle \rho(0) \rangle = m_d^2 + \cdots$$

• One expects at least extra Z2 out of $U(1)_A$ is restored above Tc

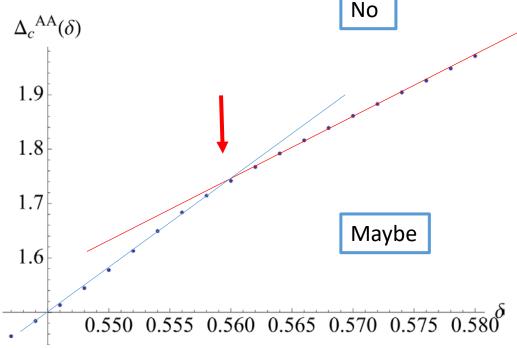
Bootstrap study of emergent symmetry

 Setup: Bootstrap CFT with O(4) x O(2) symmetry in d=3

• Can we identify the would be fixed point (with $U(1)_A$ restoration)?

- Under which condition, it is stable?
 - Is Z4 (or extra Z2) enough?

$O(4) \times O(2)$ collinear fixed point



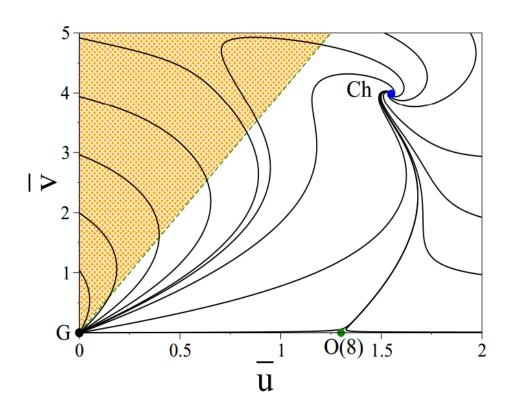
	Δ_{ϕ}	$\Delta_{ m SS}$	$\Delta_{ m ST}$	$\Delta_{ m TS}$	$\Delta_{ m TT}$	$\Delta_{ m AA}$
bootstrap	0.558(4)	1.52(5)	0.82(2)	1.045(3)	1.26(1)	1.71(6)
$\overline{ m MS}$	0.56(3)	1.68(17)	1.0(3)	1.10(15)	1.35(10)	1.9(1)
MZM	0.56(1)	1.59(14)	0.95(15)	1.25(10)	1.34(5)	1.90(15)

Collinear fixed points \rightarrow 2nd order phase transition in QCD

5-loop beta function (Calabrese, Vicari, e.g. 1309.5446)

$$\mathcal{H} = \partial_{\mu}\phi^{\alpha}_{a}\partial_{\mu}\phi^{\alpha}_{a} \\ + u(\phi^{\alpha}_{a}\phi^{\alpha}_{a})^{2} + v(\phi^{\alpha}_{a}\phi^{\alpha}_{b}\phi^{\alpha}_{b}\phi^{\beta}_{a}\phi^{\beta}_{b} - \phi^{\alpha}_{a}\phi^{\alpha}_{a}\phi^{\beta}_{b}\phi^{\beta}_{b}) \\ + u(\phi^{\alpha}_{a}\phi^{\alpha}_{a})^{2} + v(\phi^{\alpha}_{a}\phi^{\alpha}_{b}\phi^{\alpha}_{b}\phi^{\beta}_{b}\phi^{\beta}_{b} - \phi^{\alpha}_{a}\phi^{\alpha}_{a}\phi^{\beta}_{b}\phi^{\beta}_{b}) \\ + \frac{9u(u,v) = -u + 4u^{2} + 4uv + \frac{3}{2}v^{2} - \frac{57}{8}u^{3} - 11u^{2}v - \frac{61}{8}uv^{2} - 3v^{3} + \frac{93}{8}u^{4}(3) + \frac{389}{8}u^{4} + 24u^{3}v(3) + \frac{975}{16}u^{3}v \\ + \frac{99}{4}u^{2}v^{2}(3) + \frac{9357}{128}v^{2}v^{2} + 18uv^{3}(3) + 45uv^{3} + 6v^{4}(3) + \frac{1197}{128}v^{4} - \frac{1885}{186}u^{5}(5) - \frac{311}{312}u^{5}(3) + \frac{31}{312}\pi^{4}u^{5} \\ - \frac{91759}{168}u^{5}v^{2} - \frac{895}{2}u^{2}v^{3}(5) - 371u^{2}v^{3}(3) + \frac{18}{15}\pi^{4}u^{4}v - \frac{1049u^{4}}{296}u^{2}v^{2} - \frac{1876}{8}u^{3}v^{2}(3) + \frac{3537}{328}u^{4}(3) \\ + \frac{31}{36}u^{4}u^{4} - \frac{12697}{64}u^{4}v^{2} - 50v^{5}(5) - \frac{322}{32}v^{5}(3) + \frac{3}{18}\pi^{4}v^{2}v^{3} - \frac{2999}{96}u^{2}v^{3} - \frac{1878}{8}u^{4}(5) - \frac{3099}{16}u^{3}(3) \\ + \frac{31}{36}u^{4}u^{4} - \frac{12697}{64}u^{4}v^{2} + 50v^{5}(5) - \frac{322}{32}v^{5}(3) + \frac{3}{18}\pi^{4}v^{2}v^{3} - \frac{42999}{96}u^{2}v^{3} - \frac{1878}{8}u^{4}(5) - \frac{3099}{36}u^{3}v^{3}(3) \\ + \frac{31}{35}u^{4}v(3) - \frac{1853}{363}u^{6}v(3) - \frac{1853}{363}u^{6}v(3) - \frac{1853}{363}u^{6}v(3) - \frac{1853}{363}u^{6}v(3) + \frac{1853}{363}u^{6}v(3) +$$

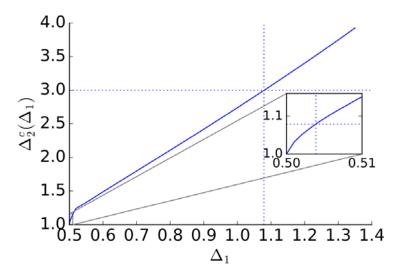
Resumed RG flow?



- The spiral behavior looks peculiar
 - Complex RG eigenvalue → non-unitary? Removable by wavefunction renormalization? (e.g. scale vs conformal)

Z2 stability?

- Does this fixed point stable under Z4 (extra Z2)?
- The question we asked before:



- ullet Exists O(4) singlet charge 2 operator with $\Delta=0.82$
- > Exists O(4) singlet charge 4 relevant operator

Unfortunately the fixed point is unstable

Surviving scenarios

- (A) $U(1)_A$ is (somehow) completely recovered
 - \rightarrow O(4) x O(2) 2nd order phase transition

$$\Delta_{\epsilon} = 1.52$$

- (B) Z4 (or Z2) is recovered
 - \rightarrow Cannot reach O(4) x O(2) fixed point
 - → Probably first order phase transition
- (C) $U(1)_{\Delta}$ is broken
 - ightarrow O(4) 2nd order phase transition $\Delta_{\epsilon}=1.665$